Contents

1	Defi	nitions 2	2
	1.1	Sets	2
	1.2	Relations, Domain & Range	3
	1.3	Functions	1
	1.4	Inverse Functions	5
2	Qua 2.1	dratics6 Standard vs. Easy to Graph Form6	5
	2.2	Solving	7
3	Higl 3.1	ner Degree Polynomial Equations 8 Solving	3
4	Poly	nomial Division)
5	Con	plex Fractions 10)
6	Rad	icals 11	l
	6.1	Expressions11	L
	6.2	Solving12	2
7	Con	pplex Numbers (a + b <i>i</i>)	3
8	Exp	onential14	1
	8.1	Basics14	1
	8.2	Solving15	5
9	Log	arithms	5
	9.1	Basics	5
	9.2	Properties17	7
	9.3	Expressions18	3
	9.4	Solving19	9
1() In	equalities)
	10.1	Compound Inequalities in 1 Variable 20)

10.2	Linear Inequalities in 2 Variables 21
10.3	Systems of Linear Inequalities in 2
Varial	oles 21
11 \$	Systems of Non-Linear Equations 22
11.1	Conic Sections22
11.2	Solving23
12 V	Word Problems24
12.1	Proportions, Unknown Numbers,
Distar	1ce 24
12.2	Money25
12.3	Sum of Parts26
13 (Calculator27
13.1	Buttons27
13.2	Rounding27
13.3	The Window28
13.4	Graphing, Finding Function Values 29
13.5	Scattergrams and Linear Regression 30
13.6	Expressions, Equations and Inverses 31
14 I	Big Picture
14.1	Topic Overview
14.2	Linear vs. Quadratic vs. Exponential 33
14.3	Undo Any 1 Variable Equation

1 Definitions

	1.1 Sets	
Set	 Any collection of things. It can be finite or infinite 	 A set of my favorite fruits The set of integers between 1 and 5 A set of ordered pairs
Set Notation { }	 Expresses sets (usually finite sets) 	 >{apples, oranges, strawberries} > {2,3,4} > {(1,2),(2,3),(3,4)}
Union ∪ Or	The union of 2 sets, A and B , is the set of elements that belong to either of the sets $A \qquad \qquad B \qquad B$	$\triangleright \{2,4,6\} \cup \{6,8,10\} = \{2,4,6,8,10\}$
Intersection ∩ And	 The intersection of 2 sets, A and B, is the set of all elements common to both set. 	$\triangleright \{2,4,6\} \cap \{6,8,10\} = \{6\}$
Null Set ∅,{}	"Empty Set"Contains no members	$\triangleright \{2,4,6\} \cap \{8,10\} = \{ \}$
Number Lines Interval Notation Set Builder Notation	 3 unique methods of expressing sets (finite or infinite) All three methods are equally good, but read the directions carefully and answer in the correct format See Number Lines & Interval Notation - MA091 Set builder notation looks like {x x ≠ 3}. It is read "The set of all x such that x is not equal to 3" 	> x < 3 ∪ x > 3 Number line: Interval notation: $(-\infty, 3) ∪ (3, \infty)$ Set builder notation: $\{x x \neq 3\}$ $ > x \le 3$ Number line: Interval notation: $(-\infty, 3]$ Set builder notation: $(-\infty, 3]$
		Set builder notation: $\{x x \le 3\}$

Page 3 of 34 2/1/2012

1.2 Relations, Domain & Range				
Relation	 A set of ordered pairs. Equations in 2 variables are also relations since they define a set of ordered pair solutions. 	 ▷ Relation: {(0,2),(1,2)} Domain: {0,1} Range: {2} 		
Domain (independent variables)	 The set of all possible <i>x</i>-coordinates for a given relation (inputs) Beware of values in the domain which create "impossibilities" – e.g. those that make a denominator equal 0, those that make a radicand negative To determine domain from a graph, project values onto the <i>x</i>-axis 	▷ Relation: $g(x) = \frac{1}{x-2}$ $x-2=0 \rightarrow x=2$ Domain: $\{x x \neq 2\}$ ▷ Relation: $g(x) = \sqrt{x-2}$ $x-2 \ge 0 \rightarrow x \ge 2$ Domain: $\{x x \ge 2\}$ ▷ Relation - see graph below:		
Range (dependent variables)	 The set of all possible <i>y</i>-coordinates for a given relation (outputs) To determine range from a graph, project values onto the <i>y</i>-axis 			

1.3 Functions				
Function	 A set of ordered pairs that assign to each <i>x</i>-value exactly one <i>y</i>-value All functions are relations, but not all relations are functions. Linear equations are always functions 	RelationFunction $1 \rightarrow 4$ $1 \rightarrow 4$ $2 \rightarrow 5$ $2 \rightarrow 5$ $3 \rightarrow 6$ $3 \rightarrow 6$		
Function Notation f(x)	 Read "function of x" or "f of x" f(x) is another way of writing y Any linear equation that describes a function can be written in this form Solve the equation for y Replace y with f(x) 	$ \triangleright y = x+1 \text{ may be written } f(x) = x+1 $ $ \triangleright (x,y) \text{ may be written } (x,f(x)) $ $ \triangleright \text{ Given } : x + y = 1 $ $ 1. y = -x + 1 $ $ 2. f(x) = -x + 1 $		
Evaluate f(x)	 Use whatever expression is found in the parentheses following the <i>f</i> to substitute into the rest of the equation for the variable <i>x</i>, then simplify completely. <i>f</i>(<i>x</i>) can be expressed as an ordered pair (<i>x</i>,<i>f</i>(<i>x</i>)) For any function <i>f</i>(<i>x</i>), the graph of <i>f</i>(<i>x</i>) + <i>k</i> is the same as the graph of <i>f</i>(<i>x</i>) shifted k units upward if <i>k</i> is positive and <i>k</i> units downward if <i>k</i> is negative. 	$ f(x) = x^{2} $ Evaluate the function $f(x)$ for $x = x - 2$ $f(x - 2) = (x - 2)^{2}$ $= x^{2} - 4x + 4$		
Vertical Line Test	 If a vertical line can be drawn so that it intersects a graph more than once, the graph is not a function 	Not a function $\langle \cdot \rangle$ $\langle \cdot \rangle$		

Page 5 of 34 2/1/2012

1.4 Inverse Functions				
One-To-One Function Horizontal Line Test	 In addition to being a function, every element of the range maps to a unique element in the domain If a horizontal line can be drawn so that it intersects a graph more than once, the graph is not a one-to-one function 	Not one-to-one One-to-one $1 \rightarrow 4$ $1 \rightarrow 4$ $2 \rightarrow 5$ $2 \rightarrow 5$ $3 \rightarrow 6$ Not one-to-one One-to-one $1 \rightarrow 4$ $2 \rightarrow 5$ $3 \rightarrow 6$ Not one-to-one One-to-one		
Inverse Function f ⁻¹	 A way to get back from y to x The inverse function does the inverse operations of the function in reverse order f⁻¹ denotes the inverse of the function f. It is read "f inverse" The symbol does not mean 1/f 	$\{(1,4), (2,5), (3,5)\} j(x) = x + 3$ $f(x) = x + 3$ $x y$ $-3 0$ $0 3$ $1 4$ $f^{-1}(x) = x - 3$		
To Find the Inverse of a One-to-one Function <i>f</i> (<i>x</i>)	 Replace f(x) with y Interchange x and y Solve for the new y Replace y with f¹(x) Check using Compositions of Functions or Graphing 	Find the inverse of $f(x) = x + 3$ 1. $y = x + 3$ 2. $x = y + 3$ 3. $x - 3 = y$ y = x - 3 4. $f^{1}(x) = x - 3$		
Composition of Functions $f \circ g$ f(g(x))	 f(g(x)) is read "f of g" or "the composition of f and g". Evaluate the function g first, and then use this result to evaluate the function f If functions are not inverses f(g(x)) ≠ g(f(x)) order matters If functions are inverses f(f⁻¹(x)) = f⁻¹(f(x)) order doesn't matter f⁻¹(f(x)) = x The function f¹ takes the output of f(x), back to x 	Let $f(x) = x + 3$ $f^{-1}(x) = x - 3$ Find $f^{-1}(f(1))$ f(1) = (1) + 3 = 4 $f^{-1}(f(1)) = f^{-1}(4) = (4) - 3 = 1$ Find $f(f^{-1}(1))$ $f^{-1}(1) = (1) - 3 = -2$ $f(f^{-1}(1)) = f(-2) = (-2) + 3 = 1$		
Graphing	 The graph of a function f and its inverse f¹ are mirror images of each other across the line y = x If f & f¹ intersect, it will be on the line y = x For calculator, use a square window 	(0,3) (-3,0) (0,-3) (0,-3)		

Page 6 of 34 2/1/2012

Part 3 - Intermediate Algebra Summary

2 Quadratics

2.1 Standard vs. Easy to Graph Form				
		Standard Form $f(x) = ax^2 + bx + c$	Easy to Graph Form $f(x) = a(x-h)^2 + k$	
Solution	Parabola	Ex: $f(x) = x^2 - 2x - 8$	Ex: $f(x) = (x-1)^2 - 9$	
Vertex	 High or low point 	$\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$ $= \left(\frac{2}{2(1)}, f(1)\right) = (1, -9)$	(h, k) = (1, -9) <i>Note: h is the constant</i> <i>after the minus sign:</i> $f(x)=(x + 1)^2 - 9$ becomes $f(x)=(x-(-1))^2-9 \& h = -1$	
Line of Symmetry	 Line which graph can be folder on so 2 halves match – vertical line thru vertex 	$x = \frac{-b}{2a} = \frac{2}{2(1)} = 1$	$\begin{array}{l} x = h \\ = 1 \end{array}$	
Direction	 The parabola opens up if a > 0, down if a < 0 	<i>a</i> is positive so parabola opens up	<i>a</i> is positive so parabola opens up	
Shape	 If ξaξ>1, the parabola is steeper than y = x² If ξaξ< 1, the parabola is wider than y = x² 	a = 1, so parabola is the same shape as $y = x^2$	a = 1, so parabola is the same shape as $y = x^2$	
<i>x</i> - intercept(s) (roots/ zeros)	 Set y = 0 and solve for x If real roots exist, the line of symmetry parses exactly half-way between them Set r = 0 and solve for 	$0 = x^{2} - 2x - 8$ $x = \frac{2 \pm \sqrt{(-2)^{2} - 4(1)(-8)}}{2}$ $x = 4, -2$ $(4,0), (-2,0)$	$0 = (x-1)^2 - 9$ $\sqrt{9} = \sqrt{(x-1)^2}$ $\pm 3 = x - 1$ x = 4, -2 (4,0), (-2,0) $y = ((0), -1)^2 = 0$	
y-intercept	y	y = (0) - 2(0) - 8 = -8 (0, -8)	y = ((0) - 1) - 9 = -8 (0, - 8)	
Graphing	 Use vertex & direction (in addition, can also include shape, roots & y-intercept) Plot points (plot vertex, 1 value to left of vertex & 1 value to right of vertex) 	(-2,0) (4,0) (4,0) (0,-8) (1,-9) (1	(-2,0) (4,0) (4,0) (0,-8) (1,-9) (1	
Converting Between Forms		To <i>Easy to Graph Form</i> 1. Complete the square $y+8+(1)=x^2-2x+(1)$ $y+9=(x-1)^2$ 2. Solve for y	To Standard Form 1. Expand $y = x^2 - 2x + 1 - 9$ 2. Simplify	

Page 7 of 34 2/1/2012

2.2 Solving				
Square Root Property If you can isolate the variable factor if $a^2 = b$, then $a = \pm \sqrt{b}$	 Isolate the variable factor Take the square root of both sides Solve Check 	Ex $47,096 = 35,000(1+r)^2$ $\frac{47,096}{35,000} = \frac{35,000(1+r)^2}{35,000}$ $1.3456 = (1+r)^2$ $\pm\sqrt{1.3456} = (1+r)$ $-1\pm\sqrt{1.3456} = r$		
Factoring Only works when answers are integers	 Set equation equal to 0 Factor Set each factor containing a variable equal to 0 Solve the resulting equations & check 			
"Completing the Square" & then using the "Square Root Property" Deriving the quadratic formula	 If the coefficient of x² is not 1, divide both sides of the equation by the coefficient of x² (this makes the coefficient of x² equal 1) Isolate all variable terms on one side of the equation Complete the square for the resulting binomial. Write the coefficient of the x term Divide it by 2 (or multiply it by ½) Square the result Add result to both sides of the equation Factor the resulting perfect square trinomial into a binomial squared Use the square root property Solve for x Check 	Ex: $2x^2 - 4x - 3 = 0$ 1. $x^2 - \frac{4}{2}x - \frac{3}{2} = 0$ 2. $x^2 - 2x = \frac{3}{2}$ 3. The coefficient of $x = -2$ 1/2 (-2) = -1 $(-1)^2 = 1$ $x^2 - 2x + 1 = \frac{3}{2} + 1$ 4. $(x-1)^2 = \frac{5}{2}$ 5. $(x-1) = \pm \sqrt{\frac{5}{2}}$ 6. $x = 1 \pm \frac{\sqrt{5}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} = 1 \pm \frac{\sqrt{10}}{2}$		
Quadratic Formula Works all the time (when answers are integer real or	1. Set equation equal to 0 2. Plug values into the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 3. Solve & check			
imaginary numbers)	• The discriminant tells the number and type of solutions. The discriminant is the radicand in the quadratic formula.	$b^2 - 4ac$ Number & Type of SolutionsPositive2 real solutionsZero1 real solutionNegative2 complex but not real solutions		

Page 8 of 34 2/1/2012

Part 3 - Intermediate Algebra Summary 3 Higher Degree Polynomial Equations

	3.1 Solving
Where the exponent can be isolated $ax^3 = c$	1. Write the equation so that the variable to be solved for is by itself on one side of the equation 2. Raise each side (not each term) of the equation to a power so that the final power on the variable will be one. (If both sides of an equation are raised to the same rational exponent, it is possible you will not get all solutions) 3. Check answer $ \begin{aligned} Ex y^3 = 27 \\ y = 3 \\ Ex y^3 = 27 \\ y = 3 \\ Ex y^3 = 27 \\ y = 3 \\ Ex y^3 = 27 \\ y = 3 \\ Ex y^3 = 27 \\ y = 3 \\ Ex y^3 = 27 \\ y = 3 \\ Ex y^3 = 27 \\ y = 3 \\ Ex y^3 = 27 \\ y = 3 \\ y^3 - 27 = 0 \\ (y - 3)(y^2 + 3y + 9) = 0 \\ y = \frac{-3 \pm \sqrt{9 - 4(1)(9)}}{2} \\ y = \frac{-3 \pm 3i\sqrt{3}}{2} \\ y - 3 = 0 \\ y = 3 \\ \end{aligned} $
For equations that contain repeated variable expressions $ax^4 + bx^2 + c = 0$	• Apply the same steps as Solving by Factoring & Zero Factor Property – MA091 Ex $p^4 - 4p^2 + 4 = 0$ $(p^2 - 2)(p^2 - 2) = 0$ $(p^2 - 2) = 0$ $p^2 = 2$ Check : $(\sqrt{2})^4 - 4(\sqrt{2})^2 + 4 = 0$ $2^{4/2} - 4 2^{2/2} + 4 = 0$ $4 - 8 + 4 = 0\sqrt{2^{4/2} - 4 2^{2/2} + 4 = 0}$ Check : $(-\sqrt{2})^4 - 4(-\sqrt{2})^2 + 4 = 0$ $2^{4/2} - 4 2^{2/2} + 4 = 0$ $4 - 8 + 4 = 0\sqrt{2^{4/2} - 4 2^{2/2} + 4 = 0}$

Page 9 of 34 2/1/2012

	Pa	rt 3 - Intermediate Algebra Su	mmary ^{2/1/2012}
		4 Polynomial Division	
Long Division	•	To divide one polynomial by another Polynomial division is similar to integer division. However, instead of digit by digit, polynomial	Ex $\frac{2x^3 - x^2 - 8x - 1}{x - 2}$
	•	division proceeds term by term. In polynomial division, the remainder must be 0 -or- of a smaller degree than the divisor.	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Long Division Steps	1.	Write both polynomials in order of descending degree. Insert $0x^n$ for all missing terms (even the constant).	$\frac{2x^3 -4x^2 \checkmark}{3x^2 -8x}$
	2.	Divide the leading term of the dividend by the leading term of the divisor to get the first term of the quotient (the coefficient may not be an integer).	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	3.	Multiply the quotient term by the divisor & <u>subtract</u> the product from the dividend; the difference should have smaller degree than the original dividend.	$\frac{-2x + 4}{-5}$
	4.	Repeat, using the difference as the new dividend, until the next "new dividend" is 0 (the divisor is a factor of the dividend) or the new dividend has	Quotient $2x^2 + 3x - 2 + \frac{-5}{-5}$
0 11 11		degree strictly smaller than the degree of the divisor (this last new dividend is the remainder).	x-2
Synthetic	•	A faster, slightly trickier way of dividing a polynomial by a binomial of the form $x - a$	Ex $\frac{2x^3 - x^2 - 8x - 1}{2}$
Synthetic Division Steps	1. 2.	In line 1, write the potential root (<i>a</i> if dividing by $x - a$). To the right on the same line, write the coefficients of the polynomials in descending degree. Insert 0 for all missing terms (even the constant). Leaving space for line 2, draw a horizontal line under the coefficients. Copy the leading coefficient into	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	3.	line 3 under the horizontal line Multiply that entry in line 3 by <i>a</i> and write the result in line 2, under the second coefficient. The first position of line 2 is blank	Quotient $2x^2 + 3x - 2 + \frac{-5}{x - 2}$
	4.	<u>Add</u> the numbers in the second position of lines 1 & 2, write in line 3	
	5.	Repeat – multiply the new entry of line 3 by a , write in next position in line 2, add entries in lines 1 & 2, write in line 3- until done.	
	6.	The last entry in line 3 is the remainder. The rest of line 3 represents the coefficients of the quotient, in descending order of degree. The degree of the quotient is one less than the degree of the dividend.	
Remainder	•	If $f(x)$ is a polynomial, then the remainder from	f(2) = 7
Theorem	-	dividing $f(x)$ by $x - a$ is the value $f(a)$ You can also get the value of $f(a)$ with substitution	$f(2) = 2(2)^{3} - (2)^{2} - 8(2) - 1$ = 16 - 4 - 16 - 1 = -5

Page 10 of 34 2/1/2012

Part 3 - Intermediate Algebra Summar	y 2/
--------------------------------------	-------------

5 Complex Fractions		
Definition	 A rational expression whose numerator, denominator, or both contain one or more rational expressions 	Ex. $\frac{x+2}{x}$ $\frac{x-4}{x}$
Simplifying: Method 1	 Multiply the numerator and the denominator of the complex fraction by the LCD of the fractions in both the numerator and the denominator. Simplify 	Ex. $\frac{\left(\frac{x+2}{x}\right)x}{\left(x-\frac{4}{x}\right)x} = \frac{x+2}{x - \frac{4}{x}x}$ $= \frac{x+2}{x^2-4}$ $= \frac{x+2}{(x-2)(x+2)}$ $= \frac{1}{x-2}$
Simplifying: Method 2	 Simplify the numerator and the denominator of the complex fraction so that each is a single fraction Perform the indicated division by multiplying the numerator of the complex fraction by the reciprocal of the denominator of the complex fraction Simplify if possible 	Ex. $\frac{\frac{x+2}{x}}{x-\frac{4}{x}} = \frac{\frac{x+2}{x}}{\frac{x^2-4}{x}}$ $= \frac{x+2}{x} \frac{x}{(x+2)(x-2)}$ $= \frac{1}{x-2}$

Page 11 of 34 2/1/2012

Part 3 - Intermediate Algebra Summary

6 Radicals

6.1 Expressions		
Like Radicals	 Same index and same radicand 	$\triangleright \sqrt{6} \& 5\sqrt{6}$
Add/Subtract Like radicals only!	 Same as polynomial expressions. Treat radicals as variables. Unlike radicals can only be combined under multiplication & division 	$\triangleright 5\sqrt{6} + 2\sqrt{6} = (5+2)\sqrt{6} = 7\sqrt{6}$ $\triangleright 5\sqrt{2} + 2\sqrt{3}$ Can't be combined
Multiply/Divide Like Indexes	 Same as polynomial expressions. Treat radicals as variables. 	▷ $(4\sqrt{x}-3)(5\sqrt{x}+2)$ = $20x+8\sqrt{x}-15\sqrt{x}-6$ = $20x-7\sqrt{x}-6$
Multiply/Divide <u>Unlike Indexes &</u> <u>Unlike Radicands</u>	 Change to rational form Write as equivalent expressions with like denominators – use the LCM of the original indices Combine using the product rule 	$ \triangleright \sqrt{2} \sqrt[3]{3} = 2^{\frac{1}{2}} 3^{\frac{1}{3}} $ $= 2^{\frac{3}{6}} 3^{\frac{2}{6}} $ $= \sqrt[6]{89} $ $= \sqrt[6]{72} $
Conjugate	 To rationalize a numerator or denominator that is a sum or difference of two terms, use the conjugate. The conjugate of a + b is a - b 	$ ightarrow \sqrt{6} + 2$ and $\sqrt{6} - 2$ are conjugates
Rationalize the Denominator/ Numerator	 Rewrite a radical expression without a radical in the denominator or without a radical in the numerator. If the radical expression to be rationalized is a monomial Write the radicand in power form Multiply by "a clever form a 1" so that the power of the radicand will equal the index. Simplify If the radical expression to be rationalized is a binomial Multiply expression by the conjugate Simplify Note: For MathXL you must rationalize the denominator of all answers unless otherwise specified 	Rationalize monomial denominator: Ex: $\sqrt[4]{\frac{1}{4}}$ 1. $=\frac{1}{\sqrt[4]{2^2}}$ 2. $=\frac{1}{\sqrt[4]{2^2}}\frac{\sqrt[4]{2^2}}{\sqrt[4]{2^2}}$ $=\frac{\sqrt[4]{4}}{\sqrt[4]{2^4}}$ 3. $=\frac{\sqrt[4]{4}}{\frac{\sqrt{2^4}}{2}}$ Rationalize binomial denominator: Ex: $\frac{2}{3\sqrt{2}+4} = \frac{2}{3\sqrt{2}+4}\frac{3\sqrt{2}-4}{3\sqrt{2}-4}$ $=\frac{2(3\sqrt{2}-4)}{18-16}$ $= 3\sqrt{2}-4$

Page 12 of 34 2/1/2012

6.2 Solving		
Where the radical can be isolated	1. Convert radicals to equivalent exponential form	$ x - \sqrt{x} - 6 = 0 $ $x - x^{\frac{1}{2}} - 6 = 0 $
$\sqrt{x+a} = b$	2. Write the equation so that one radical is by itself on one side of the equation	$x - 6 = x^{\frac{1}{2}}$ $(x - 6)^{2} = (x^{1/2})^{2}$
	3. Raise each side (<i>not each term</i>) of the equation to a power equal to the index of the radical. (<i>This will get rid of the radical which you isolated in step 2.</i>)	$(x-6)^{2} = (x^{2})^{2}$ $x^{2} - 12x + 36 = x$ $x^{2} - 13x + 36 = 0$ $(x-9)(x-4) = 0$ $x = 9, 4$
	4. Simplify (Sometimes when you are squaring a side of an equation, you end up with a binomial squared, you must remember to use FOIL).	Check: $(9) - \sqrt{(9)} - 6 = 0 \sqrt{9}$ Check: $(4) - \sqrt{(4)} - 6 = 0 \times \sqrt{9}$ $\sqrt[3]{4x + 7} + 5 = 3$ $(4x + 7)^{1/3} = -2$
	5. If the equation still contains a radical, repeat Steps 1 and 2. If not, solve.	$((4x+7)^{1/3})^3 = (-2)^3$ 4x+7 = -8 -15
	6. Check all proposed solutions in the original equation (<i>If both sides of an equation are raised to the same power, you often get extra solutions</i>)	$x = \frac{1}{4}$ Check: $\sqrt[3]{4\left(\frac{-15}{4}\right) + 7} + 5 = 3$ $\sqrt[3]{-8} + 5 = 3\sqrt{4}$
Where the equation contains repeated variable expressions $x^{2/3} + x^{1/3} + c = 0$	 Apply the same steps as Solving by Factoring & Zero Factor Property – MA091 	$ \begin{array}{c} $

Page 13 of 34 2/1/2012

7 Complex Numbers (a + b/)		
Imaginary Unit <i>i</i>	• The number whose square is $i^2 = -1$ and $i = \sqrt{-1}$	
To Write with <i>i</i> Notations	1. Write each number in terms of the imaginary unit <i>i</i> 2. Simplify $\Rightarrow \sqrt{-16} = \sqrt{-1}\sqrt{16} = 4i$ $\Rightarrow \sqrt{-5} \sqrt{-4} = i\sqrt{5} i\sqrt{4}$ $= i^2\sqrt{20} = -2\sqrt{5}$ <i>Note</i> : <i>The product rule for radicals</i> <i>does not hold true for imaginary</i> <i>numbers</i> $\sqrt{-5} \sqrt{-4} \neq \sqrt{20}$	
Complex Numbers	 All numbers a + bi where a and b are real Complex numbers are all sums and products of real and imaginary numbers 	
To Add or Subtract	• Add or subtract their real parts and then add or subtract their imaginary parts $(-3+2i) - (7-4i)$ = -10+6i	
To Multiply	• Multiply as though they are binomials $arphi(-3+2i)(7-4i)$ = -21+26i+14i+8 = -13+40i	
Complex Conjugate	• $a + bi$ and $a - bi$ $\triangleright 5 + 4i$ and $5 - 4i$	
To Divide	1. Multiply the numerator and the denominator by the conjugate of the denominator 2. The result is written with two separate parts – real & imaginary $ = \frac{4}{2-i} = \frac{4}{2-i} = \frac{2+i}{2+i} = \frac{8+4i}{4+1} = \frac{8}{5} + \frac{4}{5}i $	
To Compute Powers	1. Use power rules to break difficult to compute exponents into simpler, easy to compute exponents 2. If necessary, rationalize the denominator $i^{1} = i \qquad i^{5} = i \qquad i^{9} = i$ $i^{2} = -1 \qquad i^{6} = -1 \qquad i^{10} = -1$ $i^{3} = -i \qquad i^{7} = -i \qquad i^{11} = -i$ $i^{4} = 1 \qquad i^{8} = 1 \qquad i^{12} = 1$ $\triangleright i^{22} = i^{20} i^{2} = (i^{4})^{5} i^{2}$ $= 1^{5} (-1) = 1 (-1) = -1$ $\triangleright i^{-9} = \frac{1}{i^{9}} = \frac{1}{i} \frac{i}{i} = \frac{i}{-1} = -i$	

Page 14 of 34 2/1/2012

Part 3 - Intermediate Algebra Summary

8 Exponential

	8.1 Basics	
Exponential Functions	• Where the variable is the exponent	$\triangleright f(x) = 2^x$
Characteristics of Exponential Functions	 One-to-one (inverses of exponential functions are logarithmic functions) y-intercept always (0,1) No <i>x</i>-intercept, instead has a <i>x</i>-axis asymptote (keeps getting closer to the <i>x</i>-axis, but never gets there) Graph always contains (1,<i>b</i>) Domain: (-∞,∞) (<i>x</i> is a real number) Range: (0,∞) (<i>y</i> > 0) <i>b</i> > 0, <i>b</i> ≠ 1 	Exponential Growth $f(x) = b^{x}, \text{ for } b > 1$ Ex: $f(x) = 2^{x}$ $x y$ $-2 1/4$ $0 1$ $1 2$ $2 4$ $(1,2)$ $(1,$
		$\begin{array}{c c} \hline 1 \\ \hline 1 \\ \hline 2 \\ \hline 1/4 \\ \hline \end{array} \qquad \underbrace{ (4, 1/2) }_{\checkmark} \qquad \underbrace{ (4, 1/2) }_{\rightthreetimes} \qquad (4$
Uniqueness of <i>b</i> ^x	• If $b > 0$ and $b \neq 1$, then $b^x = b^y$ is equivalent to x = y	$3^{x} = 3^{4}$ $x = 4$
Shifted Exponential Function	• $f(x) = 2^{x-3}$ (moves function to right 3) • $f(x) = 2^x - 4$ (moves function down 4)	

Page 15 of 34 2/1/2012

	8.2 Solving	B
When you can write the bases the same $a^{x} = (a^{2})^{3}$	 If you can write the bases the same: Get common bases Set exponents equal (uniqueness of b^x) Solve for x Check in original equation If you can't write the bases the same, then solve using logarithms. 	Ex $27^{4x} = 9^{x+3}$ $(3^3)^{4x} = (3^2)^{x+3}$ $3^{12x} = 3^{2x+6}$ 12x = 2x + 6 10x = 6 $x = \frac{6}{10} = \frac{3}{5}$ Check $27^{\frac{4}{3}(\frac{3}{5})} = 9^{(\frac{3}{5}) + \frac{3}{1}}$ $27^{(\frac{12}{5})} = 9^{\frac{3}{5} + \frac{15}{5}}$ $(3^3)^{(\frac{12}{5})} = (3^2)^{\frac{18}{5}}$
Where You Can't Write the Bases the Same $a^x = b^3$	 Method 1 (Convert to log form) 1. Get base and exponent alone on one side of equals sign 2. Convert to log form 3. Change to base 10 4. Compute 5. Check 	Ex $2^{x} = 7$ $\log_{2} 7 = x$ (definition of logarithms) $\frac{\log 7}{\log 2} = x$ (exact answer) $2.81 \approx x$ (approximate answer) Check $2^{\left(\frac{\log 7}{\log 2}\right)} = 7 \sqrt{2}$
	 Method 2 ("Common log" both sides) 1. Get base and exponent alone on one side of equals sign 2. "log" both sides 3. Power rule 4. Solve for variable 5. Compute 6. Check 	Ex $2^{x} = 7$ $\log 2^{x} = \log 7$ (log both sides) $x \log 2 = \log 7$ (power rule) $x = \frac{\log 7}{\log 2}$ (exact answer) $x \approx 2.81$ (approximate answer) Check $2^{\left(\frac{\log 7}{\log 2}\right)} = 7\sqrt{2}$
	 Method 3 ("log of a base" both sides) 1. Get base and exponent alone on one side of equals sign 2. "log_b" both sides 3. Log of a base rule 4. Compute 5. Check 	Ex $2^{x} = 7$ $\log_{2} 2^{x} = \log_{2} 7$ (\log_{b} both sides) $x = \log_{2} 7$ (def. of logarithms) $x = \frac{\log 7}{\log 2}$ (exact answer) $x \approx 2.81$ (approximate answer) Check $2^{\left(\frac{\log 7}{\log 2}\right)} = 7\sqrt{2}$

Page 16 of 34 2/1/2012

Part 3 - Intermediate Algebra Summary

9 Logarithms

	9.1 Basics	
Definition of Logarithms How to graph Logarithmic Functions	 9.1 Dasies Post basies 	Ex $\log_2 8 = 3$ $\sqrt{2^3} = 8$ Ex $2^{-2} = \frac{1}{4}$ $\log_2 \frac{1}{4} = -2$ $f(x) = \log_b x$, for $b > 1$ Ex: $f(x) = \log_2 x$ $2^y = x$ x = y 1/4 = -2
Characteristic s of logarithmic functions	 5. Connect the points with a smooth curve One-to-one (inverses of logarithmic functions are exponential functions) <i>x</i>-intercept always (1,0) No <i>y</i>-intercept, instead has a <i>y</i>-axis asymptote (keeps getting closer to the <i>y</i>-axis, but never gets there) Graph always contains (<i>b</i>,1) Domain: (0,∞) (<i>x</i> > 0) Range: (-∞,∞) (<i>y</i> is a real number) <i>b</i> > 0, <i>b</i> ≠ 1 	$f(x) = \log_{b}x, \text{ for } 0 < b < 1$ Ex: $f(x) = \log_{1}x$ $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $f(x) = \log_{b}x, \text{ for } 0 < b < 1$ Ex: $f(x) = \log_{1}x$ $\frac{1}{2}$ 1
$\frac{\text{Common log}}{\log x}$	 If no base is indicated, the understood base is always 10 log x = log₁₀ x 	Ex log 100 = log ₁₀ 100 = 2 (exact answer) $10^2 = 100$
e	 One of the most important constants in mathematics <i>e</i> ≈ 2.7182 	Ex: Continuously compounded interest $A = Pe^{rt}$ Ex: The temperature of a cup of coffee $f(t) = 70 + 137e^{06t}$
Natural log ln x	• A logarithm with base e $\ln x = \ln_e x$	Ex $\ln 100 =$ $\ln_e 100 \approx 4.6052 \text{ (approximate)}$ $e^{4.6052} \approx 100 $

Page 17 of 34 2/1/2012

9.2 Properties		
	Rule	Comment
Property of Equality	x = y is equivalent to	Ex $3^x = 9$
(Allows you to "log" or	$\log_b x = \log_b y$	$\log(3^x) = \log(9)$
"unlog" both sides of		
an equations. Useful in		
solving logarithmic and		
Power Property	(n)	$\Gamma_{-} = 1_{-} (2^{\chi}) = 1_{-} (0)$
rowerroperty	$\log_b(x^*) = n \log_b x$	Ex $\log(5) = \log(9)$
		$x \log(3) = \log(9)$
		$x = \frac{10g(9)}{1-x(2)}$
		$\log(3)$
Change of base	log A	= 2
(Allows you to use your	$\log_B A = \frac{\log A}{\log B}$	Ex $\log_2 5 = \frac{\log 5}{\log_2 2}$
calculator log10 button	log D	log 5
no matter what the base		$2^{\frac{\log 2}{\log 2}} = 5$ (def of logarithms)
is.)		log 5
		$\log 2^{\log 2} = \log 5$ (log both sides)
		$\frac{\log 5}{\log 2} \log 2 = \log 5\sqrt{2}$
		log 2 log 2 log 2
Log of 1	$\log_b 1 = 0$	$Ex \log_3 1 = 0$
		$3^0 = 1\sqrt{(\text{def of logs})}$
Log of the base	$\log_b b^x = x$	Ex $\log_{10} 10^2 = 2$
		$10^2 = 10^2 \sqrt{(\text{def of logs})}$
Log as an exponent	$r \log_{b} x$	$E_{\rm res} = 10^{\log_{10}2} - 2$
log as an experience	b = x	EX 10 $\frac{1}{2}$ = 2 $\frac{1}{2}$ (def ef leve)
		$\log_{10} 2 = \log_{10} 2N \qquad (\text{def of logs})$
Product Property		$E_{\rm r} \log (10.10) = \log 10 + \log 10$
Product Property	$\log_b xy - \log_b x + \log_b y$	Ex $\log_{10}(1010) = \log_{10}10 + \log_{10}10$
	~ multiplication on the "outside"	2 = 1 + 1 (compute logs)
	addition on the outside $\log_2(w + w) = \log^2 t$	2 = 2N
	$\sim \log_b(x+y)$ can't be simplified	
Quotient Property	$\log_{h} \frac{x}{-} = \log_{h} x - \log_{h} y$	Ex $\log_{10} \left(\frac{1000}{1000} \right) = \log_{10} 1000 - \log_{10} 10$
	~ division on the "inside",	2 = 3 - 1 (compute logs)
	subtraction on the "outside"	2 = 2
	$\sim \log_b(x - y)$ can't be simplified	

Page 18 of 34 2/1/2012

9.3 Expressions		
Expansions	 To change something complicated into simple additions & subtractions. 	Ex $\log \frac{a^3b}{c^2} = \log a^3b - \log c^2$ = $\log a^3 + \log b - \log c^2$ = $3\log a + \log b - 2\log c$
Contractions	 To have one big log, useful in solving equations 	Ex $2\log 3 + 3\log 2 = \log 3^2 + \log 2^3$ = log(9 8) = log72
Evaluate	 Use change of base rule – or – convert to exponential notation Simplify if possible. If a log can be computed exactly, compute it. Else it is more exact leave it "alone". Sometimes you will be asked for an approximate solution; in that case, round the log values 	Ex $\ln \sqrt[3]{e}$ $= \frac{\ln_{e} \sqrt[3]{e}}{\ln_{e} e} \text{(change of base)}$ $= \frac{\frac{1}{3} \ln_{e} e}{\ln_{e} e} = \frac{1}{3}$ Ex $\ln \sqrt[3]{e}$ $e^{x} = e^{\frac{1}{3}} \text{(def of logs)}$ $x = \frac{1}{3}$
Evaluate (given log values)	 Expand expression into simple additions and multiplications Plug in given log values 	Ex If $\log_b 3 = .56$ and $\log_b 2 = .36$, evaluate $\log_b \sqrt{\frac{2}{3}}$ $\log_b \sqrt{\frac{2}{3}} = \log_b \frac{2^{\frac{1}{2}}}{3^{\frac{1}{2}}}$ $= \log_b 2^{\frac{1}{2}} - \log_b 3^{\frac{1}{2}}$ (quotient rule) $= \frac{1}{2}\log_b 2 - \frac{1}{2}\log_b 3$ (power rule) $= \frac{1}{2}(.56) - \frac{1}{2}(.36)$ =1

Page 19 of 34 2/1/2012

9.4 Solving		
" <i>the answer</i> " is the variable	1. Put all logarithm expressions on one side of the equals sign	Ex $\log_2 x = -\log_2(x-1) + 1$ $\log_2 x + \log_2(x-1) = 1$
$\log_a x = b$	 Use the properties to simplify the equation to one logarithm statement on one side of the equals sign 	$\log_2 x(x-1) = 1$ $\log_2 (x^2 - x) = 1$
	3. Convert the equation to the equivalent exponential form	$2^{1} = x^{2} - x$
	4. Solve	$0 = x^{2} - x - 2$ 0 = (x - 2)(x + 1) x = 2, -1
	5. Check	can't take the log of a negative number x = 2 Check $\log_2(2) = -\log_2((2) - 1) + 1$ $1 = 1\sqrt{2}$
"The base" is the variable $\log a = b$	1. Convert to exponential form	Ex $\log_b 256 = \frac{4}{3}$ $b^{\frac{4}{3}} = 256$
	2. Solve - get the variable by itself by raising each side to a common exponent	$\left(b^{\frac{4}{3}}\right)^{\frac{3}{4}} = 256^{\frac{3}{4}}$ $b = 64$
	3. Check	$\frac{\log 256}{\log 64} = \frac{4}{3}\sqrt{3}$
<i>"The exponent"</i> is the variable	 Compute using change of base formula 	Ex $\log_2 3 = x$ $x = \frac{\log 3}{\log 2}$
$\log_a b = x$	2. Check by converting to exponential form	$2^{\frac{\log 3}{\log 2}} = 3\sqrt{2}$

Page 20 of 34 2/1/2012

10 Inequalities

	10.1 Compound Inequalities in 1	Variable
Definition	 2 inequalities joined by the words and or or 2 inequalities in one statement (compact form). Just a shorthand for 2 inequalities joined by the word and 	$\triangleright -2 \le 3 - x \text{ and } 3 - x \le 0$ $\triangleright -2 \le 3 - x \le 0 \text{ same as above}$
Solving	1. IF 2 INEQUALITIES JOINED BY THE WORD AND, solve each separately and take the intersection \cap of the solution sets	Ex 1. Solve $x < 5$ and $x < 3$ 0 + + + + + + + + + + + + + + + + + + +
	2. If 2 INEQUALITIES JOINED BY THE WORD OR, solve each separately and take the union \cup of the solution sets	Ex 2. Solve $x - 2 \ge -3$ or $2x \le -4$ $\leftarrow \qquad + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ $(-\infty -2] + \begin{bmatrix} -1 \\ \infty \end{bmatrix}$
	3. <u>IF 2 INEQUALITY SIGNS</u> , solve for x in the middle (Can also be rewritten as 2 inequalities joined by the word and)	Ex 3. Solve $-2 \le 3 - x \le 0$ $-2 - 3 \le 3 - x - 3 \le 0 - 3$ $-5 \le -x \le -3$ $-5 \le -x \le -3$
	 Note: some compound inequalities have no solution; some have all real numbers as solutions 	$ \begin{array}{c} -1 & -1 & -1 \\ -5 \ge x \ge -3 \\ \varnothing \end{array} $

Page 21 of 34 2/1/2012

10.2 Linear Inequalities in 2 Variables		
Definition	• Can be written in one of the forms: $Ax + By < C$ $Ax + By \le C$ $Ax + By > C$ $Ax + By \ge C$	⊳ <i>y</i> < <i>x</i> + 5
Half-plane	• Every line divides a plane into 2 half-planes	<i></i>
Boundary	 The line that divides the plane into two half- planes 	
Solving	 Graph the boundary line by graphing the related equation. Draw the line solid if the inequality symbol is ≤ or ≥ Draw the line dashed if the inequality symbol is < or > Choose a test point not on the line. Substitute its coordinates into the original inequality. Often (0, 0) makes an easy test point. If the resulting inequality is true, shade the half-plane that contains the test point. If the inequality is not true, shade the half-plane that does not contain the test point. 	

10.3 Systems of Linear Inequalities in 2 Variables				
Definition	 2 or more linear inequalities 	$\triangleright y < x + 5$		
Solving	 Graph each inequality in the system. The overlapping region is the solution of the system. Note: some systems have no solution; some have all real numbers as solutions 	and $y \ge 2$		

11 Systems of Non-Linear Equations

11.1Conic Sections					
Conic Section	• The shape created by the intersection of a 3-dimensional cone and a				
	plane cutting through it.				
	• A general conic section is the set of all solutions to the relation: $A x^2 + B y^2 + C x + D y + E = 0$				
If A = B = 0, then	2x + y = 0	$\wedge \wedge$			
graph is a line	y = -2x	$\leftarrow \qquad \qquad$			
	General Equation: $y = mx + b$				
If B = 0, then graph	$0 = 3x^2 + 0y^2 + 2x - y + 4$	$\wedge \uparrow \uparrow$			
is a parabola	$y = 3x^2 + 2x + 4$				
	General Equation: $y = a(x-h)^2 + k$	$\leftarrow \qquad \qquad$			
If A = 0, then graph	$0 = 0x^2 + y^2 - x - 2y + 4$	$\wedge \rightarrow$			
is a parabola	$y^2 - 2y = x - 4$	\leftarrow			
	$y^2 - 2y + 1 = x - 4 + 1$				
	$(y-1)^2 = x-3$	V			
	$x = \left(y - 1\right)^2 + 3$	$Y_{1} = \sqrt{x-3} + 1$			
	General Equation: $x = a(y-k)^2 + h$	$Y_2 = -\sqrt{x-3} + 1$			
If A = B, then graph	$0 = x^2 + y^2 + 4x - 8y - 16$	\wedge			
is a circle	$16 = x^2 + 4x + y^2 - 8y$	\leftrightarrow			
	$16 + 4 + 16 = x^2 + 4x + 4 + y^2 - 8y + 16$	\bigvee			
	$36 = (x+2)^2 + (y-4)^2$	$Y_1 = 4 + \sqrt{-(x+2)^2 + 36}$			
	General Equation: $(x-h)^2 + (y-k)^2 = r^2$	$Y_2 = 4 + -\sqrt{-(x+2)^2 + 36}$			
If $A \neq B$ & they	$0 = 4x^2 + 9y^2 + 0x + 0y - 36$				
have the same sign,	$36 = 4x^2 + 9y^2$				
ellipse	$1 = \frac{x^2}{x^2} + \frac{y^2}{x^2}$	$\sqrt{1-1-2}$			
	94 $(x-k)^2$ $(y-k)^2$	$Y_1 = \frac{\sqrt{-4x^2 + 36}}{2}$			
	General Equation: $\frac{(x-h)}{a^2} + \frac{(y-k)}{b^2} = 1$	$\frac{5}{\sqrt{4r^2+36}}$			
	u v	$Y_2 = \frac{-\sqrt{-4x^2 + 30}}{3}$			
If A ≠ B & their	$0 = 4x^2 - 9y^2 + 0x + 0y - 36$	\ ^ /			
signs are different,	$36 = 4x^2 - 9y^2$				
then graph is a	$1 - x^2 y^2$	\leftarrow			
nyperbola	$1 = \frac{9}{9} - \frac{4}{4}$				
	General Equation: $\frac{(x-h)^2}{2} - \frac{(y-k)^2}{2} = 1$	r^2			
	$a^2 = b^2$	$Y_1 = 2\sqrt{\frac{x}{9}} - 1$			
		$\int r^2$			
		$Y_2 = -2\sqrt{\frac{\pi}{9}} - 1$			

Copyright © 2007-2011 Sally C. Zimmermann. All rights reserved. sally.zimmerman@montgomerycollege.edu

Page 23 of 34 2/1/2012

Part 3 - Intermediate Algebra Summary

	11.2 Solving	
Graphing	 Graph each equation separately Solve for <i>y</i>, then compute some ordered pairs Use "easy to graph form" Solve for <i>y</i>, then use calculator for graphing 	Solve $\begin{cases} x^2 - 3y = 1 \rightarrow y = -\frac{x^2}{3} - \frac{1}{3} \\ x - y = 1 \rightarrow y = x - 1 \end{cases}$ $\boxed{\begin{array}{c} x & y \\ 0 & -1/3 \end{array}}$
Substitution	 Use either equation to solve for 1 variable (pick easiest variable in easiest equation) Substitute expression into the other equation Solve the resulting 1 variable linear equation* Substitute the value(s) form Step 3 into either original equation to find the value of the other variable. Solution is an ordered pair Check all solutions in both original equations 	Solve $\begin{cases} x^2 - 3y = 1\\ x - y = 1 \end{cases}$ 1. $y = x - 1$ 2. $x^2 - 3(x - 1) = 1$ $x^2 + -3x + 2 = 0$ (x - 2)(x - 1) = 0 3. $x = 2, 1$ 4. $(2) - y = 1$ y = 1 5. $(2, 1)$ 4. $(1) - y = 1$ y = 0 5. $(1, 0)$
Addition	 Rewrite each equation in standard form <i>Ax</i> + <i>By</i> = <i>C</i> You want to be able to add the equations and have one variable cancel out. It is usually necessary to multiply one or both equations by a "magic number" so that this will happen. Add equations Find the value of one variable by solving the resulting equation* Substitute the value(s) form Step 4 into either original equation to find the value of the other variable. Solution is an ordered pair Check all solutions in both original equations 	Solve $\begin{cases} x^{2} + 2y^{2} = 10 \\ x^{2} - y^{2} = 1 \end{cases}$ 1.(They're already in standard form) 2 $-x^{2} + -2y^{2} = -10$ (multiply by -1) $\frac{x^{2} - y^{2} = 1}{3}$ 3. $-3y^{2} = -9$ $y^{2} = 3$ 4. $y = \pm\sqrt{3}$ 5. $x^{2} - (\sqrt{3})^{2} = 1$ $x^{2} = 1 + 3$ $x = \pm 2$ 6. $(\sqrt{3}, 2), (\sqrt{3}, -2)$ 5. $x^{2} - (-\sqrt{3})^{2} = 1$ $x^{2} = 1 + 3$ $x = \pm 2$ 6. $(-\sqrt{3}, 2), (-\sqrt{3}, -2)$

*If the discriminant is negative, then the equations do not intersect

*If all variables cancel & the resulting equation is true, then the equations are identical

*If all variables cancel & the resulting equation is false, then the equations do not intersect

Page 24 of 34 2/1/2012

Part 3 - Intermediate Algebra Summary

12 Word Problems

	12.1 Proportions, Unknown Numbers, Distance			
Proportions	Formula: $\frac{a}{c} = \frac{c}{c}$ Read " <i>a</i> is to <i>b</i> as <i>c</i> is to <i>d</i> "			
	b d			
	Example: 3 boxes of	$CD-Rs \cos \frac{37.47}{1}$	How much should 5	boxes cost?
	Equation: Let $x = 0$	cost of 5 boxes	2 hours	5 house
	$\frac{5 \text{ boxes}}{5 \text{ boxes}}$	$=\frac{\text{price of 5 boxes}}{\text{price of 5 boxes}}$ O	$R = \frac{3 \text{ boxes}}{1 \text{ miss of } 2 \text{ homes}} =$	$= \frac{5 \text{ boxes}}{100000000000000000000000000000000000$
	5 boxes	price of 5 boxes	price of 3 boxes	price of 5 boxes
	3 boxes	= \$37.47 (Use cro	es product)	
	5 boxes		ss product)	
	3x = (5)	(\$37.47)		
Unknown	Example: The 1st nu	umber is 4 less than th	e 2nd number. Four	times the 1st number
Numbers	is 6 more than twice	the 2 nd . Find the num	lbers.	
	Equation: Let $x = 1^{s}$	t number; $y = 2^{nd}$ num	lber	
	Eq ₁ : $x = y - 4$			
	Eq_2: $4x = 6 + 2y$	1 11		11.01
Distance	Formula: $d = rt$, when	ere d = distance, r = rate	ate, $t = time$ (if rate i	s mile/hour, then
	time is hours)		- 4 - m	
	Note: Add or subtract $(x + a)$	ct speed of wind or wa	ater current with the	rate: $(r \pm wind)$ or
	$(r \pm \text{current})$ Example: A car trav	als 180 miles in the s	me time that a truck	travels 120 miles. If
	the car's speed is 20	mph faster than the tr	ucks speed find the	car's speed and the
	truck's speed.	inpit fusion than the tr	ueres speed, <u>mid the</u>	eur s speed und the
	Equation: Let $x = ra$	te of car; $y = rate of t$	ruck	
		Rate (mph)	Time (hours)	Distance (miles)
	Car	x	180/ <i>x</i>	180
	Truck	у	120/y	120
	Eq ₁ : $x = 20 + y$			
	Since time $= \frac{\text{dista}}{1}$	$\frac{\text{ance}_{\text{car}}}{\text{car}}$; time $t = \frac{\text{dis}}{1}$	$\frac{\text{stance}_{\text{truck}}}{\text{ctime}}$ = t	time.
	ra	te _{car} , the truck	rate _{truck} , car	truck
	$Fa : \frac{180}{100} = \frac{120}{100}$			
	x y			
	Example: During the	e first part of a trip, a	canoeist travels 48 m	niles at a certain
	speed. The canoeist travels 19 miles on the second part of the trip at a speed 5 mph			
	slower. The total time for the trip is 3 hrs. What was the speed on each part of the			
	trip?			
	Equation: Let $x = ra$	te on first part of trip;	y = rate on second p	bart of trip
	Eq1: $x = 3 + y$ Since time = time	a time		
	Since $\operatorname{time}_{\operatorname{total}} = \operatorname{tim}_{\operatorname{total}}$	e _{first part} + unne _{second part}		
	Eq ₂ : $3 = \frac{48}{-19} + \frac{19}{-19}$			
	x y+5			

Remember: you need as many equations as you have variables; attach units to answer if appropriate

Page 25 of 34 2/1/2012

12.2 Money			
Money,	Formula: $V_1C_1 + V_2C_2 = V_{total}$, where V = currency value, C = number of coins,		
Coins, Bills,	bills, or purchased items		
Purchases	Example: Jack bought black pens at \$1.25 each and blue pens at \$.90 each. He		
	bought 5 more blue pens than black pens and spent \$36.75. How many of each pen		
	did he buy?		
	Equation: Let <i>x</i> = number of black pens		
	y = number of blue pens		
	x + 5 = y		
	1.25x + 90y = 36.75		
Break Even	Formula: $R(x) = C(x)$, where $R(x) =$ total revenue, $C(x) =$ total cost		
Point	Example: A company purchased \$3000 worth of new equipment so that it could		
	produce wigits. The cost of producing a wigit is \$3.00, and it is sold for \$5.50.		
	Find the number of wigits that must be sold for the company to break even.		
	Equation: Let $x =$ number of wigits		
	C(x) = total cost for producing x wigits = \$3000 + \$3.00x		
	R(x) = total revenue for selling x wigits = \$5.50x		
	5.50x = 3000 + 3.00x		
Simple	Formula: $A = P + Prt$, where A = total amount of money when using simple		
Interest	interest, $P = \text{principal}$, $r = \text{rate of interest}$, $t = \text{duration}$		
Compound Interest	Formula: $A = P\left(1 + \frac{r}{r}\right)^{nt}$, where A = total amount of money when interest is		
	(n)		
	compounded, $P = \text{principal}$, $r = \text{annual rate of interest}$, $n = \text{number of times interest}$		
	is compounded each year, $t =$ duration in years		
	Example: How much money will there be in an account at the end of 10 years if \$14,000 is deposited at 7%? The interest is compounded quarterly.		
	$(-07)^{(4\ 10)}$		
	Equation: $A = \$14,000 \left(1 + \frac{.07}{4}\right)$		
	Example: How much long will it take \$1,000 to grow to \$10,000 if the interest rate		
	is 15% and it is compounded quarterly?		
	$(15)^{(4 t)}$		
	Equation $\$10,000 = \$1,000 \left(1 + \frac{.13}{4}\right)$		
	$10 - (1 + \frac{.15}{.15})^{(4 t)}$		
	$10 - \begin{pmatrix} 1 & 4 \end{pmatrix}$		
	$\log_{\left(1+\frac{.15}{.15}\right)} 10 = 4t$		
Continuously	(4)		
Compounded	Formula: $A = Pe^{r}$, where A = total amount of money when interest is continuously		
Interest	compounded, r is the annual interest rate for P dollars invested for t years,		
merest	e = 2.71828 (use the calculator button e)		

12.3 Sum of Parts					
Work	Formula: $R_1 + R_2 = F$	R_T , where R_1 is the rate	ate/hour of on	e person	R_2 is the rate/hour
	of the 2nd person, R_T is their rate/hour when they work together. The total time it				
	takes them to complet	te the job together is	1/ R _T	-	
	Example: Together 2	painters paint the ro	om in 6 hour	s. Alone	e, the experienced
	painter can paint the r	room 2 hours faster th	han the newb	ie. <u>Find</u>	the time which each
	person can paint the r	oom alone.			
	Equation: Let $x = tot$	al time of experience	ed painter to c	complete	e job
	y = tota	al time of newbie pai	nter to comp	lete job	
		Total Time to C	Complete	Part of	Job Completed in
	E ID	Job (hours)		I Hour	(rate/hour)
	Experienced Painte	er x		1/x 1/	
	Tegether	y c		1/y 1/6	
	Together 6 1/6				
	y - 2 - x				
	1 + 1 = 1				
	<i>x y</i> 6			D (
Mixture	Formula: $V_1P_1 + V_2P_2 = V_FP_F$, where $V_1 = 1$ st volume, $P_1 = 1$ st percent solution,				
	$V_2 = 2$ nd volume, $P_2 = 2$ nd percent solution, $V_F = 1$ final volume, $P_F = 1$ final percent				
	solution				
	available a 30% alcoh	ol solution and an 8	a 30% alcohol so	of solution	How many liters of
	each solution should s	she mix to obtain 70	liters of a 50°	% alcoho	ol solution?
	Equation: Let $x = am$	ount of 30% solution	r: v = amoun	t of 80%	solution
		Amount of	Alcohol Str	ength	Amount of pure
		alcohol solution		8	Alcohol (liters)
		(liters)			· · ·
	30% Solution	X	30%		.30x
	80% Solution	у	80%		.80y
	50% Solution	70	50%		(.50)(70) = 35
	x + y = 70				
	.30x + .80y = 35				

13 Calculator

13.1 Buttons				
Calculator	• - "Carrot", to raise a number to a power. EX: $-27 \wedge 1/3 \neq -27 \wedge (1/3)$			
buttons	• MATH \rightarrow Contains some power and root computations			
	• $\overline{(-)}$ – To make a number negative. EX: (-)6			
	I [QUIT] – "When in doubt, QUIT and go HOME!"			
Calculator	• Run defaults to reset calculator. $2nd$ [MEM] $7 \rightarrow 1 \rightarrow 2$			
not working?				
Storing &	Image: Angle An			
recalling	The calculator will automatically put in [ANS] when the following keys are used at			
information	the beginning of a new line: $+$ $ \times$ \div $^{\wedge}$			
	Image: A start of the previous user entry Image: A start of the previous user entry			
	7 STO ALPHA MATH [A] – Stores the number 7 in the variable A			
	Ind [RCL] ALPHA MATH [A] – Displays the number 7			

13.2 Rounding

- 1. When a number is written in scientific notation, the number of digits used is the number of significant digits.
- 2. Performing a calculation does not give more accuracy then the numbers used to make the calculator; the results should not suggest that it does
 - When performing $, \div, \sqrt{}$, ^: the answer contains the minimum number of significant digits of the numbers used
 - When performing +, -: the answer is accurate to the same place as the least accurate number used in the calculation
- 3. Do not round until the end of a problem. When using a calculator, use the stored values in the calculator (the calculator carries more digits than it sees)

Page 28 of 34 2/1/2012

	13.3 The Window
Setting the exact window format WINDOW	 Press WINDOW Change the appropriate setting WINDOW Xmin = pick min x value Ymin = pick min y value Xmax = pick max x value Ymax = pick max y value Xscl = pick x axis increment Yscl = pick y axis increment
Adjusting the viewing window zoom (you can press WINDOW at any time to see what range you are looking at)	 ZBox - zooms on the box you specify. Press 2001 Move curser to one corner of zoom box and press ENTER Move curser to the opposite corner of zoom box and press ENTER Move curser to the opposite corner of zoom box and press ENTER Zoom In - magnifies the graph around the cursor location Press 2000 Use arrow keys to position the cursor on the portion of the line that you want to zoom in on To zoom in, press ENTER You can continue to zoom by just pressing ENTER - or - by moving the cursor and pressing ENTER Zoom Out - does the reverse of zoom in Press 2000 Press 2000 Zoom Out - does the reverse of zoom in Press 2000 Press 2000 Zoom Out - does the reverse of zoom in Press 2000 Press 2000 Press 2000 Zoom Out - does the reverse of zoom in Press 2000 Press 2000 Zoom Out - does the reverse of zoom in Press 2000 Press 2000 Zoom Out - does the reverse of zoom in Press 2000 Press 2000 Press 2000 Press 2000 Press 2000 Zoom Out - does the reverse of zoom in Press 2000 Press 2000 Zoom Out - does the reverse of zoom in Press 2000 Press 2000 Zoom Out - does the reverse of zoom in Press 2000 Press 2000 Zoom In - magnifies the graph around window so that the spacing on the tick marks on the x-axis is the same as that on the y-axis. A circle will display properly, not as an oval. Press 2000 ZDecimal - lets you trace a curve by using the numbers 0, 1, .2, for x. ZInteger can be used for any viewing window. Press 2000 ZoomStat – will change your viewing window so that y

Page 29 of 34 2/1/2012

	13.4 Graphing, Finding Function Values		
Graphing	1. Put equation in "Y equals" form		
functions	$Y = \rightarrow Y_1 =$ enter function (Use <u>x, t, O, N</u> to enter the variable x)		
	GRAPH – you might have to change the viewing window, see previous table		
Turning an	1. Y=		
Equation On	2. Move the cursor to the equation whose status you want to change.		
or Off	3. Use \bigcirc to place the cursor over the "=" sign of the equation.		
	4. Press ENTER to change the status.		
Finding	• To display points along the graph one at a time (<i>The curser is forced to</i>		
function	remain exactly on the graph. The position of the curser will be displayed as an		
values with	ordered pair in the viewing window.)		
TRACE	1. TRACE		
	2. \mathbf{r}_{k} Increase and decrease the <i>x</i> -values.		
Finding	To det vraine the v value, given an x value.		
function	- To determine the y-value, given an x-value		
values with	1. Let [CALC] - 1. Value -enter any x (ij you enter 0 jor x, the y-intercept with he display)		
	2 If the r or v value is not displayed in "graph mode" an error message is		
	returned Adjust your viewing window		
	To determine the x-intercent (or root)		
	1 2^{nd} [CALC] $\rightarrow 2:$ zero		
	2. Move curser to the left of the x-intersect and hit ENTER		
	3. Move curser to the right of the <i>x</i> -intersect and hit ENTER		
	4. Hit ENTER for guess, then the x-intercept will be displayed		
	• To determine the minimum/maximum (the vertex of a parabola)		
	1. [CALC] \rightarrow 3: minimum/4: maximum		
	2. Move curser to the left of the min/max and hit ENTER		
	3. Move curser to the right of the min/max hit ENTER		
	4. Hit ENTER for guess, then the local minimum/maximum will be displayed		
Finding	To show graph(s) in table format		
function	1. [TBL SET] to display the TABLE SETUP menu		
values with	TARLE SETUR		
2nd [TABLE]	The start value		
	Λ Thi - nick increment to increase start value by		
	Indeput: Auto Ask		
	Depend: Auto Ask		

Page 30 of 34 2/1/2012

13.5 Scattergrams and Linear Regression				
Scatter-	1. Clear L1 and L2: STAT $1 \rightarrow$ Move to L1 with arrow keys \rightarrow CLEAR ENTER \rightarrow Move			
grams and	to L2 with arrow keys \rightarrow CLEAR ENTER			
Performing	2. Enter data into L1 (independent variable) and L2 (dependent variable): use			
Linear	arrow keys			
Regression	3. Turn on STAT PLOT: $Y = \rightarrow$ with arrow keys move to PLOT1 \rightarrow ENTER			
	4. Clear any graphs: $Y = \rightarrow$ with arrow keys move to function lines \rightarrow CLEAR			
	5. Show linear correlation coefficient r : 2 nd [CATALOG] \rightarrow Scroll down to			
	$DiagnosticOn \rightarrow \text{enter}$			
	6. Find regression line: STAT \rightarrow calc $4 \rightarrow$ vars \rightarrow Y-vars 1 enter			
	7. Graph: ZOOM 9			
	8. Move along the points or line: TRACE			
Customizing	1. ^{2nd} [STAT PLOT]			
the Plotter				

Page 31 of 34 2/1/2012

	13.6 Expressions, Equations and Inverses				
Testing for	1.	Y = to display the EQUATION menu			
equivalent expressions		Plot1 Plot2 Plot3 $V_1 = \frac{\text{enter 1}^{\text{st}} \text{ expression}}{\text{enter 2}^{\text{nd}} \text{ expression}}$ (move the curser over "\" and hit ENTER 4 times to change it to " θ ")			
	2.	GRAPH (The graphs will be identical if they are equal)			
Solving a 1 variable equation	1.	$ \begin{array}{l} \textbf{Y} = & \text{to display the EQUATION menu} \\ \hline Plot1 & Plot2 & Plot3 \\ & & Y_1 = & \text{enter right side of equation} \\ & & & Y_2 = & \text{enter left side of equation} \end{array} $			
	2.	GRAPH (The x values where the graphs intersect are the solutions)			
Solving systems of equations	1.	$ \begin{array}{l} \textbf{Y} = & \text{to display the EQUATION menu} \\ \hline Plot1 & Plot2 & Plot3 \\ & & Y_1 = & \text{enter } 1^{\text{st}} \text{ function} \\ & & Y_2 = & \text{enter } 2^{\text{nd}} \text{ function} \end{array} $			
	2.	 Use the intersect option to find where the two graphs intersect 2nd [CALC] → 5: intersect Move spider close to the intersection & hit ENTER 3 times An ordered pair will be displayed 			
Determining if 2 functions are inverses of each other	1. 2. 3.	Y = to display the EQUATION menu Plot1 Plot2 Plot3 Y_1 enter 1 st function Y_2 enter 2 nd function Y_3 x,T,O,N ZOOM → 5: ZSquare GRAPH (If Y_1 and Y_2 are symmetric about Y_3 , then they are inverses of each other)			

14 Big Picture

14.1 Topic Overview

Page 33 of 34 2/1/2012

14.2 Linear vs. Quadratic vs. Exponential					
	<u>Line</u> ar	Quadratic	Exponential		
Graph – function with infinite solutions	Line		Increasing or decreasing at a faster and faster rate		
General form	$y = \frac{1}{2}x + 3$ Sløpe (m) y-intercept	$a \qquad b \qquad c$ $y = 0 x^{2} - 2 x - 3$ $y = (x - 1)^{2} - 4$ $h \qquad k$	$y = (1) (2^{x})$ base y-intercept multiplier		
Graphing with critical information	1. Plot y-intercept1. Plot the vertex2. Start at y-intercept, move vertically the numerator of the slope, and horizontally the denominator of the slope1. Plot the vertex $\begin{pmatrix} -b \\ 2a \end{pmatrix}$, $f\left(\frac{-b}{2a}\right)$ or (h,k) 2. Plot an additional point3. Draw symmetric parabola		 Plot the y-intercept Plot points on both sides 		
Graphing with x-y chart – get equation in "y equals form"	xy -1 2.50313.5	Pick the vertex and points around it x y 0 -3 1 -4 2 -3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Domain	All real numbers	All real numbers	All real numbers		
Range	All real numbers	$y \ge -4$	<i>y</i> > 0		
y-intercept (0,y)	If the equation is in "y equals	" form, it is easy to set $x=0$ and	solve		
<i>x</i> -intercept (<i>x</i> ,0)	See "Solving for x, given y" t	below. Set $y=0$.			
Solving for <i>y</i> ,	Substitute in the value for x a	nd compute			
Solving for <i>x</i> ,	• Get <i>x</i> by itself with "undoing" operations	 Use square root property Get equation equal to zero, then factor or use the quadratic formula 	 Get like bases and set exponents equal "log" both sides and solve for <i>x</i> 		
Determining the equation	• Find the slope and the <i>y</i> -intercept	• Substitute the vertex in (<i>h</i> , <i>k</i>) form	• Find the <i>y</i> -intercept and the base multiplier		
Examples	• Find equation of line with a slope of <i>m</i> going thru (<i>x</i> , <i>y</i>)	• The path of a ball as a function of time	Compound interestExponential decay		
Inverse – swap $x \& y$, solve for y_{\oplus}	$x = \frac{1}{2}y + 3$ f ⁻¹ (x) = 2x - 6	No inverse, not one-to-one	$x = (1)2^{y}$ $f^{-1}(x) = \log x / \log 2$		

		Part 3	Intern	nediate	e Alge	bra Su	mmar	y 2/1/2012
u	Logarithmic	$\log(x) = 5$					$10^{\log(x)} = 10^5$ x = 100,000	
	Exponential	$2^{x}=5$					$\log_2 2^x = \log_2 5$ $x = \log_2 5$	
ariable Equatio	Rational Exponent	$2x^{3/2} = 16$			$x^{3/2} = 8$	$(x^{3/2})^{\Lambda}(2/3)=8^{\Lambda}(2/3)$ x = 4		
3 Undo Any 1 V	Quadratic	$200 = 100(1+r)^2$			$200/100 = (1+r)^2$	sqrt(2) =(1+ <i>r</i>)		<i>r</i> = sqrt(2) -1
14.3	Linear	32 = (9/5)C + 32		0 = (9/5)C	(5/9)0=(9/5)C(5/9) C = 0			
		Example	Simplify	Addition/ Subtraction	Multiplication/ Multiplication/ Molecularies	Bower/Boot	Exponential/ Logarithms	Parenthesis

If both sides of an equation are raised to the same power, all solutions of the original equation are among the If a root greater than 2 is taken of both sides of an equation, it is possible not all solutions will be obtained solutions of the new equations. • •

Page 34 of 34