Part 2 - Beginning Algebra Summary Page 1 of 34 1/21/2012

1.	Nur	mbers	
	1.1.	Number Lines	
	1.2.	Interval Notation	
2.	Ine	qualities4	
	2.1.	Linear with 1 Variable	
3.	Lin	ear Equations	
	3.1.	The Cartesian Plane	
	3.2.	Graphing Lines	
	3.3.	Intercepts and Slope	
	3.4.	Finding the Equation of a Line	
4.	Sys	tems of Linear Equations9	
	4.1.	Definitions	
	4.2.	Solving by Graphing	
	4.3.	Solving by Substitution	
	4.4.	Solving by Addition or Subtraction	
5.	Wo	rd Problems	
	5.1.	Solving	
6.	Poly	ynomials	
	6.1.	Definitions	
	6.2.	Multiplication	
	6.3.	Division	
7.		e toring 16	
	7.1.	GCF (Greatest Common Factor)	
	<i>7.2.</i>	4 Terms	
	7.3.	Trinomials: Leading Coefficient of 1	
	7.4.	Trinomials: All	
	7.5.	Perfect Square Trinomials & Binomials	
0	7.6.	Steps to Follow	
8.		adratics	
	8.1.	About	
	8.2. 8.3.	Graphing	
	8.4.	Solve by Factoring Solve with the Quadratic Equation	
9.		solve with the Quadratic Equation	
9.	9.1.	Computation Rules	25
	9.1. 9.2.	Scientific Notation	
10		dicals	
10	10.1 .	Definitions	27
	10.1.	Computation Rules	
11		computation nules	
11	11.1.		20
	11.1. 11.2.	Simplifying Expressions	
	11.2. 11.3.	Solving Equations	
17		nmary	
14	12.1 .		21
	12.1. 12.2.	Formulas Types of Equations	
	12.2.	Solve Any 1 Variable Equation	
	, 2.0.		

Page 2 of 34 1/21/2012

1. Numbers

	1.1. Number Lines	
Number Lines	\circ () – If the point is not included	
	• $\begin{bmatrix} \\ \end{bmatrix}$ – If the point is included	
	— — — Shade areas where infinite points are	
	included	
Real Numbers	 Points on a number line 	
	 Whole numbers, integers, rational and 	\triangleright 7,-7, $\frac{7}{2}$, π
	irrational numbers	_
Positive Infinity	• An unimaginably large positive number.	$\leftarrow \rightarrow$
(Infinity)	(If you keep going to the right on a	∞ or $+\infty$
	number line, you will never get there)	
Negative Infinity	• An unimaginably small negative number.	$\langle \rightarrow \rangle$
	(If you keep going to the left on a number	—∞
	line, you will never get there)	

Page 3 of 34 1/21/2012

	1.2. Interval Notation		
Interval Notation (shortcut, instead of drawing a number line)	 Ist graph the answers on a number line, then write the interval notation by following your shading from left to right Always written: 1) Left enclosure symbol, 2) smallest number, 3) comma, 4) largest number, 5) right enclosure symbol Enclosure symbols — Does not include the point [] — Includes the point Infinity can never be reached, so the enclosure symbol which surrounds it is an open parenthesis 		
Ex. $x = 1$ "x is eq	$\begin{array}{c c} \text{ ual to 1"} & \dots & \dots & \\ \hline \end{array} \xrightarrow{-2 -1 & 0 & 1 & 2} \end{array}$	{1}	
	Ex. $x \neq 1$ "x is not equal to 1"		
	ss than or equal to 1" $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ $	(-∞,1]	
	reater than 1" \dots -2 -1 0 1 2reater than or equal to 1"-2 -1 0 1 2-2 -1 0 1 2-2 -1 0 1 2	$(1,\infty)$ $(1,\infty)$	

Page 4 of 34 1/21/2012

2. Inequalities

	2.1. Linear with 1 Variable	
Standard Form	• $ax+b < c$ $ax+b \le c$ $ax+b > c$ $ax+b \ge c$	$\triangleright 2x + 4 > 10$
Solution	• A ray	$\triangleright_{x>3} \underbrace{\leftarrow_{0123}}$
Multiplication Property of Inequality	 When both sides of an inequality are multiplied or divided by a negative number, the direction of the inequality symbol must be reversed to form an equivalent inequality. 	$ \triangleright 4 \le -2x \\ \frac{4}{-2} \ge \frac{-2x}{-2} $
Solving	 Same as Solving an Equation with 1 Variable (MA090), except when both sides are multiplied or divided by a negative number 	Ex $4 \le -2x$ $\frac{4}{-2} \ge \frac{-2x}{-2}$ $x \le -2$ $x \le -2$ $x \le -2$
	 2. Checking Plug solution(s) into the original equation. Should get a true inequality. Plug a number which is not a solution into the original equation. Shouldn't get a true inequality 	$ \triangleright 4 \leq -2(-3) 4 \leq 6 \diamond 4 \leq -2(0) 4 \leq 0 \times $

Page 5 of 34 1/21/2012

3. Linear Equations

		3.1. The Cartesian Plane	
Rectangular Coordinate System	$\begin{array}{c} n \\ \underline{x} \\ \underline{x} \\ \underline{y} \\ \underline{y} \\ \underline{c} $	Two number lines intersecting at the point 0 on each number line. <u>X-AXIS</u> - The horizontal number line <u>X-AXIS</u> - The vertical number line <u>DRIGIN</u> - The point of intersection of the axes <u>QUADRANTS</u> - Four areas which the rectangular coordinate system is divided into <u>DRDERED PAIR</u> - A way of representing every point in the rectangular coordinate system (<i>x</i> , <i>y</i>)	Quadrant II Quadrant I y (-3,1) (-1.5,-2.5) Quadrant III Quadrant IV
Is an Ordered Pair a Solution?	v	Yes, if the equation is a true statement when the variables are replaced by the values of the ordered pair	Ex $x + 2y = 7$ (1, 3) is a solution because 1 + 2(3) = 7

Page 6 of 34 1/21/2012

	3.2. Graphing Lines	S
General	 Lines which intersect the <i>x</i>-axis contain the variable <i>x</i> Lines which intersect the <i>y</i>-axis contain the variable <i>y</i> Lines which intersect both axis contain <i>x</i> and <i>y</i> 	
Graphing by plotting random points	 Solve equation for y Pick three <u>easy</u> <i>x</i>-values & compute the corresponding <i>y</i>-values Plot ordered pairs & draw a line through them. (If they don't line up, you made a mistake) 	$ > x + 2y = 7 y = -\frac{x}{2} + \frac{7}{2} \frac{x + y}{-1 + 4} \frac{0 + 3.5}{1 + 3} $
Graphing linear equations by using a point and a slope	 Plot the point Starting at the plotted point, vertically move the rise of the slope and horizontally move the run of the slope. Plot the resulting point Connect both points 	$ y = \left(\frac{1}{2}x + \frac{7}{2}\right) $ Point = 7/2 Slope = -1/2

Page 7 of 34 1/21/2012

	3.3. Intercepts and Slo	pe
<mark>x-intercept</mark> (x, 0)	 WHERE THE GRAPH CROSSES THE X-AXIS Let y = 0 and solve for x 	Ex $x + 2y = 7$ x + 2(0) = 7 x = 7 (7,0)
y-intercept (0, y)	 WHERE THE GRAPH CROSSES THE Y-AXIS Let x = 0 and solve for y 	Ex $x + 2y = 7$ 0 + 2y = 7 y = 3.5 (0, 3.5)
Slope of a Line	• The slant of the line. Let Point 1: $P_1 = (x_1, y_1)$ & Point 2: $P_2 = (x_2, y_2)$ $m (slope) = \frac{rise (change in y)}{run (change in x)}$ $= \frac{y_2 - y_1}{x_2 - x_1}$	Ex Let $P_1 = (1, 1), P_2 = (4, 4)$ $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 1}{4 - 1} = 1$
Properties of Slope	 <u>POSITIVE SLOPE</u> - Line goes up (from left to right). The greater the number, the steeper the slope_ <u>NEGATIVE SLOPE</u> - Line goes down (from left to right). The smaller the number (more negative), the steeper the slope. <u>HORIZONTAL LINE</u> - Slope is 0 <u>VERTICAL LINE</u> - Slope is undefined <u>PARALLEL LINES</u> - Same slope <u>PERPENDICULAR LINES</u> - The slope of one is the negative reciprocal of the other Ex: m = -½ is perpendicular to m = 2 	$m = 0$ $m = 1/2$ $m_1 = 2$ $m_2 = 2$ $m = -2$
Standard Form	 ax + by = c x and y are on the same side The equations contains no fractions and a is positive 	$\triangleright x + 2y = 7$
Slope-Intercept Form	 y = mx + b, where m is the slope of the line, & b is the y-intercept "y equals form"; "easy to graph form" 	$\triangleright By \text{ solving } x + 2y = 7 \text{ for } y$ $y = -\frac{x}{2} + \frac{7}{2}$
Point-Slope Form	 y - y₁ = m(x - x₁), where m is the slope of the line & (x₁, y₁) is a point on the line Simplified, it can give you Standard Form or Slope-Intercept Form 	▷ Using (7, 0) and $m = -\frac{1}{2}$ $y - 0 = -\frac{1}{2}(x - 7)$

Page 8 of 34 1/21/2012

	3.4. Finding the Equation o	f a Line
If you have a horizontal line	 The slope is zero y = b, where b is the y-intercept 	Ex. $y = 3$
If you have a vertical line	 The slope is undefined x = c, where c is the x-intercept 	Ex. $x = -3$
If you have a slope & y-intercept	 Plug directly into Slope-Intercept Form 	Ex. $m = 4$ & y-intercept (0,2) y = 4x + 2 2 = 4(0) + 2
If you have a point & a slope	 METHOD 1 1. Use Point-Slope Form 2. Work equation into Standard Form or Slope-Intercept Form 	Ex. point (3,2) & $m = 2$ y-2 = 2(x-3) y-2 = 2x-6 y = 2x-4 (2) = 2(3) - 4 $\sqrt{2}$
	 METHOD 2 1. Plug the point into the <i>Slope-</i> <i>Intercept Form</i> and solve for <i>b</i> 2. Use values for m and b in the <i>Slope-</i> 	Ex. point (3,2) & $m = 2$ y = mx + b (2) = (2)(3) + b 2 = 6 + b b = -4 y = 2x - 4 (2) = 2(3) - 4 $$
If you have a point & a line that it is parallel or perpendicular to	 Intercept Form Determine the slope of the parallel or perpendicular line (e.g if it is parallel, it has the same slope) If the slope is undefined or 0, draw a picture If the slope is a non-zero real number, go to <i>lf you have a point & a slope</i> 	Ex. point (3,2) & perpendicular to x-axis m = undefined x = 3 Ex. point (3,2) & perpendicular to $y = 2x - 4$ m = 2, so for perpendicular line $m = -1/2$
If you have 2 points	 Use the slope equation to determine the slope Go to <i>If you have a point & a slope</i> 	Ex. (0,0) & (3,6) $m = \frac{6-0}{3-0} = 2$

Page 9 of 34 1/21/2012

4. Systems of Linear Equations

	4.1. Definitions	
Type of Intersection	 <u>IDENTICAL (I)</u> - Same slope & same y-intercept <u>NO SOLUTION (N)</u> - Same slope & different y-intercept, the lines are parallel <u>ONE POINT</u> - Different slopes 	Identical Consistent Dependent
Terminology	 <u>CONSISTENT SYSTEM</u> - The lines intersect at a point or are identical. System has at least 1 solution <u>INCONSISTENT SYSTEM</u> - The lines are parallel. System has no solution <u>DEPENDENT EQUATIONS</u> - The lines are identical. Infinite solutions <u>INDEPENDENT EQUATIONS</u> - The lines are different. One solution or no solutions 	No solution Inconsistent Independent One point Consistent Independent

	4.2. Solving by Graphin	g
1	Graph both equations on the same Cartesian plane The intersection of the graphs gives the common solution(s). If the graphs intersect at a point, the solution is an ordered pair.	$y = \frac{1}{2}x - 1$ $y = x - 1$
2	Check the solution in both original equations	$(0,-1) -1 = \frac{1}{2}(0) - 1 -1 = (0) - 1$

Page 10 of 34 1/21/2012

	4.3. Solving by Su	Ibstitution
		Solve $\begin{cases} x - 2y = 1\\ 2x - 4 = 6y \end{cases}$
1.	Solve either equation for either variable. (pick the equation with the easiest variable to solve for)	1. $y = \frac{1-x}{-2}$
2.	Substitute the answer from step 1 into the other equation	2. $2x - 4 = \oint_{-2}^{-3} \left(\frac{1 - x}{-2} \right)$
3.	Solve the equation resulting from step 2 to find the value of one variable *	3. $2x = -3 + 3x + 4$ x = -1
4.	Substitute the value form Step 3 in any equation containing both variables to find the value of the other variable.	4. $y = \frac{1 - (-1)}{-2} = -1$ 5. $(-1, -1)$
5.	Write the answer as an ordered pair	6. $(-1) - 2(-1) = 1$ $1 = 1\sqrt{-1}$
6.	Check the solution in both original equations	2(-1) - 4 = 6(-1)
		-6 = -6

*If all variables disappear & you end up with a true statement (e.g. 5 = 5), then the lines are identical If all variables disappear & you end up with a false statement (e.g. 5 = 4), then the lines are parallel

Page 11 of 34 1/21/2012

4.4. Solving by Add	lition or Subtraction
	Solve $\begin{cases} x - 2y = 1\\ 2x - 4 = 6y \end{cases}$
1. Rewrite each equation in standard form $Ax + By = C$	1. $\begin{aligned} x - 2y &= 1\\ 2x - 6y &= 4 \end{aligned}$
2. If necessary, multiply one or both equations by a number so that the coefficients of one of the variables are opposites.	2. Multiply both sides of the first equation by -2 -2x + 4y = -2
3. Add equations (One variable will be eliminated)*4. Solve the equation resulting from step 3 to find the value of one variable.	$\frac{2x - 6y = 4}{3. -2y = 2}$ 4. $y = -1$
 Substitute the value form Step 4 in any equation containing both variables to find the value of the other variable. Write the answer as an ordered pair Check the solution in both original equations 	5. $x-2(-1) = 1$ x = -1 6. $(-1,-1)$ 7. $-2(-1) + 4(-1) = -2$
/. Check the solution in both original equations	$-2 = -2\sqrt{2(-1) - 4} = 6(-1)$ -6 = -6\empty

*If all variables disappear & you end up with a true statement (e.g. 5 = 5), then the lines are identical If all variables disappear & you end up with a false statement (e.g. 5 = 4), then the lines are parallel

Page 12 of 34 1/21/2012

5. Word Problems

5.1. Solving			
	1 Variable, 1 Equation Method	2 Variables, 2 Equations Method	
 UNDERSTAND THE PROBLEM As you use information, cross it out or <u>underline</u> it. 	In a recent election for mayor <u>800</u> received three times as many votes did each candidate receive?		
 DEFINE VARIABLES Create "Let" statement(s) The variables are usually what the problem is asking you to solve for 	 <i>Name what x is</i> (Can only be one thing. When in doubt, choose the smaller thing) <i>Define everything else in terms of x</i> Let x = Number of votes Mr. J 3x = Number of votes Mr. S 	Let $x =$ Number of votes Mr. S y = Number of votes Mr. J	
 WRITE THE EQUATION(S) You need as many equations as you have variables 	x + 3x = 800	• Usually each sentence is an equation x + y = 800 x = 3y	
(4) SOLVE THE EQUATION(S)	4x = 800 $x = 200$	(3y) + y = 800 (Substitution) 4y = 800 y = 200	
 Answer THE QUESTION Answer must include units! 	 Go back to your "Let" statement 200 = Number of votes Mr. J 600 = Number of votes Mr. S 	 Go back to your "Let" statement 200 = Number of votes Mr. J Go back to your "Equations" & solve for remaining variable x + (200) = 800 x = 600 600 = Number of votes Mr. S 	
 CHECK Plug answers into equation(s) 	(200) + 3(200) = 800 $800 = 800 \sqrt{200}$	(600) + (200) = 800 800 = 800 (600) = 3(200) 600 = 600	

Page 13 of 34 1/21/2012

6. Polynomials

	6.1. C	Definitions		
Term	• A constant, a variable, or a product of a constant and one or more variables raised to powers.			
Polynomial		hich contains only whole	e number exponents	and no
	variable in the den	ominator		
Polynomial Name	Number of Terms	Polynomial Name	Examples	
According to Number	1	Monomial	3 <i>x</i>	
of Terms	2	Binomial	3x + 3	
	3	Trinomial	$x^2 + 2x + 1$	
Degree of a Polynomial	1. Express polynomial in simplified (expanded) form.			
Determines number of	2. Sum the powers of each variable in the terms.			
answers (x-intercepts)	3. The degree of a polynomial is the highest degree of any of its terms			
Polynomial Name	Degree	Polynomial Name	Examples	
According to Degree	1	Linear	3 <i>x</i>	
	2	Quadratic	$3x^2$	
	3	Cubic	$3x^3$	
	4	Quartic	$3x^4$ $3x^3y$	

Page 14 of 34 1/21/2012

6.2. Multiplication Multiply each term of the first polynomial by each term of the second polynomial, and then combine like terms		
 Horizontal Method Can be used for any size polynomials 	Ex: $(x-2)(x^2+5x-1)$ = $x(x^2+5x-1) - 2(x^2+5x-1)$ = $x \bullet x^2 + x \bullet 5x + x(-1) + (-2)x^2 + (-2)5x + (-2)(-1)$	
Vertical Method	$= x^{3} + 5x^{7} - x - 2x^{2} - 10x + 2$ $= x^{3} + 3x^{2} - 11x + 2$	
 Can be used for any 	Ex: $(x-2)(x^2+5x-1)$ x^2 5x -1	
size polynomials.	x -2	
 Similar to multiplying two numbers together 	$-2x^2$ $-10x$ 2	
	$\frac{x^{3} 5x^{2} -x}{x^{3} +3x^{2} -11x +2}$	
	$x^3 + 3x^2 - 11x + 2$	
 FOIL Method 1. May only be used when multiplying two binomials. First terms, 	Ex: $(x-2)(x-3)$ F O I L = $x \bullet x + x(-3) + (-2)x + (-2)(-3)$	
Outer terms, Inner terms, Last terms	$= \frac{x^2}{3x - 2x + 6}$	

Page 15 of 34 1/21/2012

6.3. Division Dividing a Polynomial by a Monomial		
Write Each Numerator Term over the Denominator Method $\frac{a+b+c}{d} = \frac{a}{d} + \frac{b}{d} + \frac{c}{d}$	Ex: $\frac{2x+2}{4}$ = $\frac{2x}{4} + \frac{2}{4}$ = $\frac{1}{2}x + \frac{1}{2}$	
Factor Numerator and Cancel Method	Ex: $\frac{2x+2}{4}$ = $\frac{2(x+1)}{4}$ = $\frac{x+1}{2}$ = $\frac{1}{2}x + \frac{1}{2}$	

Page 16 of 34 1/21/2012

7. Factoring

	7.1. GCF (Greatest Common	Factor)
Factoring	 Writing an expression as a product Numbers can be written as a product of primes. Polynomials can be written as a product of <i>prime polynomials</i> Useful to simplify rational expressions and to solve equations The opposite of multiplying 	▷ Factored $2(x+2)$ ▷ Not factored 2x+4 $2 \cdot x + 2 \cdot 2$ factoring ▷ $2x+4 = 2(x+2)$ Nultiplying
GCF of a List of Integers	 Write each number as a product of prime numbers Identify the common prime factors The <u>PRODUCT OF ALL COMMON PRIME</u> <u>FACTORS</u> found in Step 2 is the GCF. If there are no common prime factors, the GCF is 1 	▷ Find the GCF of 18 & 30 $18 = 2 \cdot 3 \cdot 3$ $30 = 2 \cdot 3 \cdot 5$ GCF = 2 • 3 = 6
GCF of a List of Variables	 The variables raised to the smallest power in the list 	$\triangleright \text{ Find the GCF of } x \& x^2$ GCF = x
GCF of a List of Terms	• The product of the GCF of the numerical coefficients and the GCF of the variable factors	$\Rightarrow Find the GCF of 18x & 30x^2$ GCF = $6x$
Factor by taking out the GCF	 Find the GCF of all terms Write the polynomial as a product by factoring out the GCF Apply the distributive property Check by multiplying 	$ \triangleright -2x^{2} + 6x^{3} = (-2x^{2}) + (-2x^{2}) (-3x) = -2x^{2} (1 - 3x) = -2x^{2} + 6x^{3} \triangleright -x^{2} + 1 = (-1) (x^{2}) + (-1) (-1) = -1(x^{2} - 1) = -x^{2} + 1 $

Page 17 of 34 1/21/2012

7.2. 4 Terms		
a + b + c + d = (? + ?)(? + c)	<u>?)</u>	
FACTOR BY GROUPING	\triangleright Factor 10 <i>ax</i> -6 <i>xy</i> -9 <i>y</i> +15 <i>a</i>	
1. Arrange terms so the 1^{st} 2 terms have a common factor	1. $10ax + 15a - 6xy - 9y$	
and the last 2 have a common factor		
2. For each pair of terms, factor out the pair's GCF	2. $5a(2x+3) - 3y(2x+3)$	
3. If there is now a common binomial factor, factor it out		
4. If there is no common binomial factor, begin again,	(2x+3)(5a-3y)	
rearranging the terms differently. If no rearrangement		
leads to a common binomial factor, the polynomial		
cannot be factored.		

Page 18 of 34 1/21/2012

7.3. Trinomials: Leading	
$x^{2} + bx + c = (x + ?)(x + ?)$	<mark>')</mark>
• <u>TRIAL & ERROR</u> \swarrow Product is c (x + one number)(x + other number) \swarrow Sum is b 1. Place x as the first term in each binomial, then determine	Ex: Factor $x^2 + 7x + 10$ 1. $(x +)(x +)$
whether addition or subtraction should follow the variable $x^{2} + bx + c = (x + d)(x + e)$ $x^{2} - bx + c = (x - d)(x - e)$ $x^{2} \pm bx - c = (x + d)(x - e)$	2. $2 5 = 10$ 1 10 = 10 3. $2 + 5 = 7 - YES$
 Find all possible pairs of integers whose product is c For each pair, test whether the sum is b Check with FOIL √ 	5. $2+3=7-1$ ES 1+10=11 - NO (x+5)(x+2) 4. $x^2 + 7x + 10 $

Page 19 of 34 1/21/2012

	7.4. Trinomials: All			
	$ax^{2} + bx + c = (?x + ?)(?x + ?)$			
•	<u>METHOD 1</u> (trial & error) 1. Try various combinations of factors of ax^2 and c until a middle term of bx is obtained when checking.	Ex: Factor: $3x^2 + 14x - 5$ Product is $3x^2$ Product is -5 (3x-1)(x+5)		
	2. Check with FOIL $$	15x - x = 14x (correct middle term)		
•	 <u>METHOD 2</u> (<i>ac</i>, factor by grouping) 1. Identify <i>a</i>, <i>b</i>, and <i>c</i> 2. Find 2 "magic numbers" whose product is <i>ac</i> and whose sum is <i>b</i>. <i>Factor trees can be very useful if you are having trouble finding the magic numbers</i> (See MA090) 	Ex: Factor: $3x^2 + 14x - 5$ 1. $a = 3$ b = 14 c = -5 2. $ac = (3) (-5) = -15$ b = 14 $(15) (-1) = -15 \checkmark$		
	 Rewrite <i>bx</i>, using the "magic numbers" found in Step 2 Factor by grouping Check with FOIL √ 	$(15) + (-1) = 15 \vee (15) \vee (15) + (-1) = 14 \vee (15) + (-1) = 14 \vee (15) \vee (15) + (-1) = 14 \vee (15) \vee ($		
	 <u>METHOD 3</u> (quadratic formula) 1. Use the quadratic formula to find the <i>x</i> values (or roots) 	Ex: Factor: $3x^2 + 14x - 5$ 1. $a = 3$ b = 14 c = -5 $x = \frac{-14 \pm \sqrt{14^2 - 4(3)(-5)}}{6}$ $x = \frac{1}{3}, -5$		
	 For each answer in step 1., rewrite the equation so that it is equal to zero 	2. $x = \frac{1}{3}$ $x - \frac{1}{3} = 0$ $3x - 1 = 0$		
	3. Multiply the two expressions from step 2, and that is the expression in factored form.	$\begin{array}{c} x = -5 \\ \hline x + 5 \end{array} 0 \end{array}$		
	4. Check with FOIL $$	3. $(3x-1)(x+5)$		

Part 2 - Beginning Algebra Summary Page 20 of 34 1/21/2012

7.5.	7.5. Perfect Square Trinomials & Binomials				
Perfect Square Trinomials $a^2 \pm 2ab + b^2$	• Factors into perfect squares (a binomial squared) $a^2 + 2ab + b^2 = (a+b)^2$ $a^2 - 2ab + b^2 = (a-b)^2$	$\triangleright 9x^{2} + 24x + 16 = (3x)^{2} + 2(3x)(4) + (4)^{2}$ = (3x + 4) ² (a = 3x, b = 4) $\triangleright 9x^{2} - 24x + 16 = (3x)^{2} - 2(3x)(4) + (4)^{2}$ = (3x - 4) ² (a = 3x, b = 4)			
Difference of Squares $a^2 - b^2$	• Factors into the sum & difference of two terms $a^2 - b^2 = (a+b)(a-b)$	▷ $x^2 - 1 = (x)^2 - (1)^2$ (a = x, b = 1) = (x + 1)(x - 1)			
Sum of Squares $a^2 + b^2$	• Does not factor $a^2 + b^2 = Prime$	$ ightarrow x^2 + 1$ is prime			
Difference of Cubes $a^3 - b^3$ (MA103)	• $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$	▷ $8x^3 - 27 = (2x)^3 - (3)^3 (a = 2x, b = 3)$ = $(2x - 3)(4x^2 + 6x + 9)$			
Sum of Cubes $a^3 + b^3$ (MA103)	• $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$	▷ $8x^3 + 27 = (2x)^3 + (3)^3 (a = 2x, b = 3)$ = $(2x + 3)(4x^2 - 6x + 9)$			
Prime Polynomials (P)	 Can not be factored 	▷ $x^2 + 3x + 1$ is prime ▷ $x^2 - 3$ is prime			

Page 21 of 34 1/21/2012

	7.6. Steps to Fol	low
1.	Put variable terms in descending order of degree with the constant term last.	Ex. $-32 + 2x^4$ = $2x^4 - 32$
2.	Factor out the GCF	$=2(x^4-16)$
3.	 Factor what remains inside of parenthesis <u>2 TERMS</u> – see if one of the following can be applied <i>Difference of Squares</i> <i>Sum of Cubes</i> <i>Difference of Cubes</i> <u>3 TERMS</u> – try one of the following <i>Perfect Square Trinomial</i> <i>Factor Trinomials: Leading Coefficient of 1</i> <i>Factoring Any Trinomial</i> <u>4 TERMS</u> – try <i>Factor by Grouping</i> 	$=2(x^2+4)(x^2-4)$
1.	If both steps 2 & 3 produced no results, the polynomial is prime. You're done \textcircled{O} (Skip steps 5 & 6)	
2.	See if any factors can be factored further	$= 2(x^2 + 4)(x + 2)(x - 2)$
3.	Check by multiplying	$= [2(x^{2}+4)][(x+2)(x-2)]$ = (2x ² +8)(x ² -4) = 2x ⁴ -32

Page 22 of 34 1/21/2012

8. Quadratics

8.1. About		
Standard Form	$ax^2 + bx + c = 0$	$\triangleright x^2 - 3x + 2 = 0$
Solutions	• Has <i>n</i> solutions, where <i>n</i> is the	$\triangleright x^3 - 3x^2 + 2x = 0 $ (has 3 solutions)
	highest exponent	

	8.2. Graphing	
Standard Form	$y = ax^2 + bx + c$ a , b, and c are real constants	$\triangleright y = x^2 - 9x + 20$
Solution	 A parabola 	
Simple Form	 y = ax² Vertex (high/low point) is (0,0) Line of symmetry is x = 0 The parabola opens up if a > 0, down if a < 0 	$\triangleright y = -4x^2$
Graph	 Plot y value at vertex Plot y value one unit to the left of the vertex Plot y value one unit to the right of the vertex 	$ y = -4x^{2} $ $ \frac{x y}{0 0} $ $ \frac{y}{-1 -4} \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark $

Page 23 of 34 1/21/2012

	8.3. Solve by Factoring		
Zero Factor Property	1. If a product is 0, then a factor is 0	ightarrow xy = 0 (either x or y must be zero)	
Solve by Factoring	 Write the equation in standard form (equal 0) Factor Set each factor containing a variable equal to zero Solve the resulting equations 	$ > x^{2} - 3x + 2 = 0 1. x(x - 1) (x - 2) = 0 2. x = 0, x - 1 = 0, x - 2 = 0 3. x = 0, 1, 2 $	

Page 24 of 34 1/21/2012

8.4. Solve with the Quadratic Equation				
To solve a quadratic equation that is difficult or impossible to factor				
	$=\frac{1\pm\sqrt{17}}{2}$			
	8			

Page 25 of 34 1/21/2012

9. Exponents

9.1. Computation Rules			
Exponential notation	$base \rightarrow x^a < x ponent$	$2^3 = 2 \bullet 2 \bullet 2 = 8$	
 Shorthand for repeated multiplication 			
Multiplying common bases	$x^a x^b = x^{a+b}$	$2^2 \ 2^3 = 2^{2+3} = 2^5 = 32$	
 Add powers 		$(3x^2)(2y)(4x) = 24x^3y$	
Dividing common basesSubtract powers	$\frac{x^m}{x^n} = x^{m-n}$	$\frac{3^5}{3^3} = 3^{5-3} = 3^2 = 9$	
 Raising a product to a power Raise each factor to the power 	$(xy)^{a} = x^{a} y^{a}$ $(x^{m}y^{n})^{a} = x^{ma} y^{na}$	$(2x^3)^2 = 2^2 x^6 = 4x^6$	
 Raising a quotient to a power Raise the dividend and divisor to the power 	$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$	$\left(\frac{2}{z}\right)^2 = \frac{2^2}{z^2} = \frac{4}{z^2}$	
Raising a power to a powerMultiply powers	$\left(x^a\right)^b = x^{a \bullet b}$	$\left(2^3\right)^2 = 2^{3\ 2} = 2^6 = 64$	
Raising to the zero powerOne	$x^0 = 1$, when $x \neq 0$	$6x^0 = (6)(1) = 6$	
 Raising to a negative power Reciprocal of positive power When simplifying, eliminate negative powers 	$x^{-n} = \frac{1}{x^n}$	$2^{3} 2^{-3} = \frac{2^{3}}{1} \frac{1}{2^{3}} = 1$	

Page 26 of 34 1/21/2012

	9.2. Scientific Notation		
Scientific	 Shorthand for writing very small and large numbers 	$(1.2 \times 10^2)(1.$	2×10^{3})
Notation	• $a \bullet 10^r$, where $1 \le a < 10 \& r$ is an integer		$=1.44 \times 10^{5}$
Standard Form	 Long way of writing numbers 	120×1200 =	144000
Standard	1. Move the decimal point in the original number to the	510.	.051
Form	left or right so that there is <u>one</u> digit before the	5.10	05.1
to	decimal point		~1
Scientific	2. Count the number of decimal places the decimal point		
Notation	is moved in STEP 1		
	 If the original number is 10 or greater, the count is positive 	+2	
	 If the original number is less than 1, the count is negative 		-2
	3. Multiply the new number from STEP 1 by 10 raised	5.1×10^{2}	5.1×10^{-2}
	to an exponent equal to the count found in STEP 2	5.1×10	0111110
Scientific	1. Multiply numbers together	5.1×10^{2}	5.1×10^{-2}
Notation		$= 5.1 \times 100$. 1
to			$=5.1 \times \frac{1}{100}$
Standard		= 510	=.051
Form			

Page 27 of 34 1/21/2012

10. Radicals

	10.1. Definitions				
Roots	• Undoes raising to powers $\sqrt[2]{81} = 9$ because $9^2 = 81$ index	$ ▷ \sqrt{81} = \sqrt[2]{81} = 9 $ (The square root of 81 is 9) $ ▷ \sqrt{27} = \sqrt[3]{27} = 3 $ (The cube root of 27 is 3)			
	index $\sqrt[2]{81}$ radical radicand				
Computation	 If <u>n IS AN EVEN POSITIVE INTEGER</u>, then ⁿ√aⁿ = a The radical √ represents only the non-negative square root of a. The -√ represents the negative square root of a. <u>IF n IS AN ODD POSTIVIE INTEGER</u>, then ⁿ√aⁿ = a 	$ \triangleright \sqrt{9} = \sqrt{3^2} = 3 = 3 \triangleright \sqrt{(-3)^2} = -3 = 3 \triangleright \sqrt{(x+1)^2} = x+1 \triangleright \sqrt{-9} $ "Not a real number" $ \triangleright -\sqrt{9} = -\sqrt{3^2} = - 3 = -3 \triangleright \sqrt{.09} = .3 = .3 (.3 \bullet .3 = .09) \triangleright \sqrt{3} \approx 1.73 \approx 1.73 \text{ (approximately)} \triangleright \sqrt[3]{27} = \sqrt[3]{3^3} = 3 \triangleright \sqrt[3]{-27} = \sqrt[3]{(-3)^3} = -3 $			
Notation: Radical vs. Rational Exponent	 The root of a number can be expressed with a radical or a rational exponent Rational exponents The numerator indicates the power to which the base is raised. The denominator indicates the index of the radical 	$\triangleright \sqrt[3]{27} = (27)^{1/3}$ $\triangleright \sqrt[3]{27^2} = (\sqrt[3]{27})^2 = 27^{2/3} = (27^{1/3})^2$ $\triangleright \frac{1}{\sqrt[3]{27^2}} = \left(\frac{1}{\sqrt[3]{27}}\right)^2 = 27^{-2/3} = (27^{1/3})^{-2}$ Note, it's usually easier to compute the root before the power			

Page 28 of 34 1/21/2012

	10.2. Computation Rules		
Operations	 Roots are powers with fractional exponents, thus power rules apply. 	$\triangleright \sqrt[3]{-8x^3} = (-8x^3)^{1/3}$ $= (-8)^{1/3} (x^3)^{1/3} = -2x$	
Product Rule	$\sqrt[n]{a}\sqrt[n]{b} = \sqrt[n]{ab}$	$ ightarrow \sqrt{6}\sqrt{7} = \sqrt{42}$	
Quotient Rule	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$, provided $\sqrt[n]{b} \neq 0$	$ ightarrow \sqrt{\frac{1}{25}} = \frac{\sqrt{1}}{\sqrt{25}} = \frac{1}{5}$	
Simplifying Expressions	 Separate radicand into "perfect squares" and "leftovers" Compute "perfect squares" "Leftovers" stay inside the radical so the answer will be exact, not rounded 	▷ Just perfect squares $\sqrt{36x^2} = 6x$ ▷ Prefect squares & leftovers $\sqrt{32x^3} = \sqrt{16x^2}\sqrt{2x} = 4x\sqrt{2x}$ ▷ Just leftovers $\sqrt{33x} = \sqrt{33x}$	

Page 29 of 34 1/21/2012

11. Rationals

	11.1. Simplifying Expres	ssions
Rational Numbers	 Can be expressed as quotient of integers (fraction) where the denominator ≠ 0 All integers are rational All "terminating" decimals are rational 	ightarrow 0 = 0/1 ightarrow 4 = 4/1 ightarrow 4.25 = 17/4
Irrational Numbers	 Cannot be expressed as a quotient of integers. Is a non-terminating decimal 	▷ π = 3.141592654 ▷ √2 = 1.414213562
Rational Expression	 An expression that can be written in the form ^P/_Q, where <i>P</i> and <i>Q</i> are polynomials Denominator ≠0 	$\triangleright \frac{x}{x+6}$, Find real numbers for which this expression is undefined: $x + 6 = 0$; $x = -6$
Simplifying Rational Expressions (factor)	 Completely factor the numerator and denominator Cancel factors which appear in both the numerator and denominator 	$\triangleright \text{Simplify } \frac{4x+20}{x^2-25}$ $= \frac{4(x+5)}{(x+5)(x-5)}$ $= \frac{4}{x-5}$

Page 30 of 34 1/21/2012

	11.2. Arithmetic Opera	tions
Multiplying/ Dividing Rational Expressions (multiply across) Adding/ Subtracting Rational Expressions (get common denominator)	 If it's a division problem, change it to a multiplication problem Factor & simplify Multiply numerators and multiply denominators Write the product in simplest form Factor & simplify each term Find the LCD Find the LCD is the product of all unique factors, each raised to a power equal to the greatest number of times that it appears in any one factored denominator Rewrite each rational expression as an equivalent expression whose denominator is the LCD Add or subtract numerators and place the sum or difference over the common denominator Write the result in simplest form 	Simplify $\frac{x}{x+6} = \frac{3}{x}$ $= \frac{3}{x+6}$ Simplify $\frac{x}{x+6} = \frac{3}{x}$ $= \frac{3}{x+6}$ Simplify $\frac{x}{x+6} = \frac{3}{6}$ $= \frac{3}{(x+6)}$ $= \frac{6(x+6)}{(6)(x+6)} + \frac{3(x+6)}{6(x+6)}$ $= \frac{6x}{6(x+6)} + \frac{3x+18}{6(x+6)}$ $= \frac{9x+18}{6(x+6)}$ $= \frac{9(x+18)}{6(x+6)}$ $= \frac{9(x+18)}{6(x+6)}$ $= \frac{3x+6}{2(x+6)}$

Page 31 of 34 1/21/2012

	11.3. Solvi	ng Equations
Solving by Eliminating the Denominator	 Factor & simplify each term Multiply both sides (all <i>terms</i>) by the LCD 	Solve $\frac{x}{x+6} + \frac{3}{x} = 1$ LCD = $x(x+6)$ $[x(x+6)] \left[\frac{x}{x+6} + \frac{3}{x} \right] = [x(x+6)]1$
	3. Remove any grouping symbols	$\begin{bmatrix} x(x+6)\\1 \end{bmatrix} \begin{bmatrix} x\\x+6 \end{bmatrix} + \begin{bmatrix} x(x+6)\\1 \end{bmatrix} \begin{bmatrix} 3\\x \end{bmatrix} = \begin{bmatrix} x(x+6) \end{bmatrix} 1$ $x(x) + 3(x+6) = 1(x^2 + 6x)$
	 4. Solve 5. Check answer in original equation. If it makes any of the denominators equal to 0 (undefined), it is not a solution 	$x^{2} + 3x + 18 = x^{2} + 6x$ $x = 6$ Check $\frac{(6)}{(6) + 6} + \frac{3}{(6)} = 1$ $\frac{1}{2} + \frac{1}{2} = 1\sqrt{2}$
Solving Proportions with the Cross Product $\frac{a}{b} = \frac{c}{d}$	 If your rational equation is a proportion, it's easier to use this shortcut 1. Set the product of the diagonals equal to each other 2. Solve 3. Check 	Solve $3 = x$ 3(x-1) = 4x 3x-3 = 4x x = -3 Check $\frac{3}{4} = \frac{(-3)}{(-3)-1}\sqrt{3}$

Page 32 of 34 1/21/2012

12. Summary

	12.1. Formulas		
Geometric		SUM OF ANGLES: Angle 1 + Angle 2 + Angle 3 = 180°	
	Right Triangle c	• <u>PYTHAGOREAN THEOREM</u> : $a^2 + b^2 = c^2$ ($a = \log, b = \log, c = hypotenuse$) ~The hypotenuse is the side opposite the right angle. It is always the longest side.	
Other	Distance	• <u>DISTANCE</u> : $d = rt$ ($r = rate, t = time$)	

Page 33 of 34 1/21/2012

	12.2. Types of Equations				
	1 Variable	2 Variables			
Linear Equations	x - 2 = 0	y = x - 2 page			
	MA090	8 Solution: Line			
	Solution: 1 Point <	₩ 2			
Linear Inequalities	$\begin{array}{c c} 0 & 2 \\ \hline x - 2 < 0 \\ \end{array} \qquad \qquad \text{page}$	y > x - 2			
	4 page	Solution: $\frac{1}{2}$ plane $\langle \cdot \cdot \cdot \rangle$			
	Solution: Ray	Solution. 12 plane			
Systems of Linear	$\int x = 7$	$\int y = -x$			
Equations	y = -5	$\begin{cases} y = -x \\ y = x + 2 \end{cases} $ page			
	page 10	10			
	Solution: 1 point, infinite points	Solution: 1 point, infinite points			
	or no points	or no points			
		$\langle \mathcal{V} \rangle \rightarrow$			
Quadratic	$x^2 + 5x + 6 = 0 \qquad \text{page}$	$y = 2x^2$ page			
Equations	34	22			
	Solution: Usually 2 points	Solution: Parabola \leftarrow			
	$ \xrightarrow{-3 -2 0} $	•			
Higher Degree	-3 -2 = 0 $x^3 + 5x^2 + 6x = 0$ page	$y = x^3 + 5x^2 + 6x \qquad \qquad \land \qquad $			
Polynomial	34	Solution: Curve			
Equations (cubic,	Solution: Usually x points, where				
quartic, etc.)	x is the highest exponent $\xrightarrow{-3}$ -2 0	\vee			
Rational Equations	$x^2 - 1$	$x^2 - 1$			
-	$\frac{x^2 - 1}{x + 1} = 1$ page	$y = -\frac{x^2 - 1}{x + 1} + 1$			
	31	Solution: Sometimes simplifies to			
	Solution: Sometimes simplifies to	a linear or quadratic equation			
	a linear or quadratic equation				

* To determine the equation type, simplify the equation. Occasionally all variables "cancel out".

- If the resulting equation is true (e.g. 5 = 5), then all real numbers are solutions.
- If the resulting equation is false (e.g. 5 = 4), then there are no solutions.

