Part 2 - Beginning Algebra Summary

1. Numbers 2
1.1. Number Lines 2
1.2. Interval Notation. 3
2. Inequalities 4
2.1. Linear with 1 Variable 4
3. Linear Equations 5
3.1. The Cartesian Plane 5
3.2. Graphing Lines 6
3.3. Intercepts and Slope 7
3.4. Finding the Equation of a Line 8
4. Systems of Linear Equations 9
4.1. Definitions 9
4.2. Solving by Graphing. 9
4.3. Solving by Substitution 10
4.4. Solving by Addition or Subtraction 11
5. Word Problems 12
5.1. Solving. 12
6. Polynomials 13
6.1. Definitions 13
6.2. Multiplication. 14
6.3. Division. 15
7. Factoring 16
7.1. GCF (Greatest Common Factor) 16
7.2. 4 Terms 17
7.3. Trinomials: Leading Coefficient of 1 18
7.4. Trinomials: All. 19
7.5. Perfect Square Trinomials \& Binomials. 20
7.6. Steps to Follow 21
8. Quadratics 22
8.1. About 22
8.2. Graphing 22
8.3. Solve by Factoring. 23
8.4. Solve with the Quadratic Equation 24
9. Exponents 25
9.1. Computation Rules 25
9.2. Scientific Notation 26
10. Radicals 27
10.1. Definitions. 27
10.2. Computation Rules. 28
11. Rationals 29
11.1. Simplifying Expressions 29
11.2. Arithmetic Operations. 30
11.3. Solving Equations 31
12. Summary 32
12.1. Formulas 32
12.2. Types of Equations. 33
12.3. Solve Any 1 Variable Equation 34

Part 2 - Beginning Algebra Summary

1. Numbers
1.1. Number Lines

Number Lines	() - If the point is not included []- If the point is included \qquad - Shade areas where infinite points are included	
Real Numbers	- Points on a number line - Whole numbers, integers, rational and irrational numbers	$\triangleright 7,-7, \frac{7}{2}, \pi$
Positive Infinity (Infinity)	- An unimaginably large positive number. (If you keep going to the right on a number line, you will never get there)	
Negative Infinity	- An unimaginably small negative number. (If you keep going to the left on a number line, you will never get there)	$\stackrel{\longleftrightarrow}{-\infty}$

Part 2 - Beginning Algebra Summary

1.2. Interval Notation

Interval Notation
(shortcut, instead of drawing a number line)

- 1st graph the answers on a number line, then write the interval notation by following your shading from left to right
- Always written: 1) Left enclosure symbol, 2) smallest number, 3) comma, 4) largest number, 5) right enclosure symbol
- Enclosure symbols
() - Does not include the point
[] - Includes the point
- Infinity can never be reached, so the enclosure symbol which surrounds it is an open parenthesis
Ex. $x=1$ " x is equal to $1 "$

Ex. $x \neq 1$ " x is not equal to 1 " $\leftarrow_{-2-1} 0_{1}^{\mathrm{O}} \underset{2}{\longrightarrow}$
Ex. $x<1$ " x is less than 1 ".

Part 2 - Beginning Algebra Summary

2. Inequalities

2.1. Linear with 1 Variable		
Standard Form	- $\quad a x+b<c \quad a x+b \leq c \quad a x+b>c \quad a x+b \geq c$	$\triangleright 2 x+4>10$
Solution	- A ray	
Multiplication Property of Inequality	- When both sides of an inequality are multiplied or divided by a negative number, the direction of the inequality symbol must be reversed to form an equivalent inequality.	$\begin{aligned} \triangleright 4 & \leq-2 x \\ \frac{4}{-2} & \geq \frac{-2 x}{-2} \end{aligned}$
Solving	1. Same as Solving an Equation with 1 Variable (MA090), except when both sides are multiplied or divided by a negative number	$\begin{aligned} \text { Ex } 4 & \leq-2 x \\ \frac{4}{-2} & \geq \frac{-2 x}{-2} \\ -2 & \geq x \\ x & \leq-2 \end{aligned} \underset{-3-2-1}{\longrightarrow}$
	2. Checking - Plug solution(s) into the original equation. Should get a true inequality. - Plug a number which is not a solution into the original equation. Shouldn't get a true inequality	$\begin{aligned} & \triangleright 4 \leq-2(-3) \\ & 4 \leq 6 \sqrt{ } \\ & \triangleright 4 \leq-2(0) \\ & 4 \leq 0 \times \end{aligned}$

Part 2 - Beginning Algebra Summary

3. Linear Equations

3.1. The Cartesian Plane

Rectangular Coordinate System	- Two number lines intersecting at the point 0 on each number line. - X-AXIS - The horizontal number line - Y-AXIS - The vertical number line - ORIGIN - The point of intersection of the axes - QUADRANTS - Four areas which the rectangular coordinate system is divided into - ORDERED PAIR - A way of representing every point in the rectangular coordinate system (x, y)	Quadrant II Quadrant I Quadrant III Quadrant IV
Is an Ordered Pair a Solution?	- Yes, if the equation is a true statement when the variables are replaced by the values of the ordered pair	Ex $\quad x+2 y=7$ $(1,3)$ is a solution because $1+2(3)=7$

Part 2 - Beginning Algebra Summary

3.2. Graphing Lines		
General	- Lines which intersect the x-axis contain the variable x - Lines which intersect the y-axis contain the variable y - Lines which intersect both axis contain x and y	
Graphing by plotting random points	1. Solve equation for y 2. Pick three easy x-values $\&$ compute the corresponding y-values 3. Plot ordered pairs \& draw a line through them. (If they don't line up, you made a mistake)	$\begin{gathered} \triangleright x+2 y=7 \\ y=-\frac{x}{2}+\frac{7}{2} \end{gathered}$
Graphing linear equations by using a point and a slope	1. Plot the point 2. Starting at the plotted point, vertically move the rise of the slope and horizontally move the run of the slope. Plot the resulting point 3. Connect both points	$\begin{aligned} & \left.\left.\triangleright y=-\frac{1}{2}\right) x+\frac{7}{2}\right) \\ & \text { Point }=7 / 2 \\ & \text { Slope }=-1 / 2 \end{aligned}$

Part 2 - Beginning Algebra Summary

3.3. Intercepts and Slope		
x-intercept $(x, 0)$	- WHERE THE GRAPH CROSSES THE X-AXIS - Let $y=0$ and solve for x	Ex $\begin{aligned} & x+2 y=7 \\ & x+2(0)=7 \\ & x=7 \\ &(7,0) \end{aligned}$
$\begin{aligned} & \hline \boldsymbol{y} \text {-intercept } \\ & (0, y) \end{aligned}$	- WHERE THE GRAPH CROSSES THE Y-AXIS - Let $x=0$ and solve for y	
Slope of a Line	- The slant of the line. Let Point 1: $\mathrm{P}_{1}=\left(x_{1}, y_{1}\right) \&$ Point 2: $\mathrm{P}_{2}=\left(x_{2}, y_{2}\right)$ $\begin{aligned} m(\text { slope }) & =\frac{\text { rise }(\text { change in } \mathrm{y})}{\text { run }(\text { change in } \mathrm{x})} \\ & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \end{aligned}$	Ex Let $\mathrm{P}_{1}=(1,1), \mathrm{P}_{2}=(4,4)$ $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-1}{4-1}=\underset{\rightarrow}{~}$
Properties of Slope	- Positive Slope - Line goes up (from left to right). The greater the number, the steeper the slope - NEGATIVE SLOPE - Line goes down (from left to right). The smaller the number (more negative), the steeper the slope. - Horizontal line - Slope is 0 - VERTICAL LINE - Slope is undefined - PARALLEL LINES - Sanpe slope - PERPENDICULAR LINES - The slope of one is the negative reciprocal of the other Ex: $m=-1 / 2$ is perpendicular to $m=2$	
Standard Form	- $\quad a x+b y=c$ - $\quad x$ and y are on the same side - The equations contains no fractions and a is positive	$\triangleright x+2 y=7$
Slope-Intercept Form	- $y=m x+b$, where m is the slope of the line, $\& b$ is the y-intercept - " y equals form"; "easy to graph form"	$\begin{aligned} & \triangleright \text { By solving } x+2 y=7 \text { for } y \\ & \qquad y=-\frac{x}{2}+\frac{7}{2} \end{aligned}$
Point-Slope Form	- $y-y_{l}=m\left(x-x_{1}\right)$, where m is the slope of the line \& $\left(x_{l}, y_{l}\right)$ is a point on the line - Simplified, it can give you Standard Form or Slope-Intercept Form	$\begin{aligned} & \triangleright \operatorname{Using}(7,0) \text { and } m=-\frac{1}{2} \\ & y-0=-\frac{1}{2}(x-7) \end{aligned}$

Part 2 - Beginning Algebra Summary

3.4. Finding the Equation of a Line		
If you have a horizontal line...	- The slope is zero - $y=b$, where b is the y-intercept	Ex. $y=3$ $\stackrel{\leftrightarrow}{\stackrel{\leftrightarrow}{\bullet}}$
If you have a vertical line...	- The slope is undefined - $x=c$, where c is the x-intercept	Ex. $x=-3$
If you have a slope \& y-intercept...	- Plug directly into Slope-Intercept Form	$\begin{aligned} & \text { Ex. } m=4 \& y \text {-intercept }(0,2) \\ & y=4 x+2 \\ & 2=4(0)+2 \sqrt{2} \end{aligned}$
If you have a point \& a slope...	- Method 1 1. Use Point-Slope Form 2. Work equation into Standard Form or Slope-Intercept Form	$\begin{aligned} & \text { Ex. point }(3,2) \& m=2 \\ & \begin{array}{l} y-2=2(x-3) \\ y-2=2 x-6 \\ y=2 x-4 \\ (2)=2(3)-4 \sqrt{ } \end{array} \end{aligned}$
	- Method 2 1. Plug the point into the SlopeIntercept Form and solve for b 2. Use values for m and b in the SlopeIntercept Form	$\begin{aligned} & \text { Ex. point }(3,2) \& m=2 \\ & y=m x+b \\ & \begin{array}{l} (2)=(2)(3)+b \\ 2=6+b \\ b=-4 \\ y=2 x-4 \\ (2)=2(3)-4 \sqrt{ } \end{array} \end{aligned}$
If you have a point \& a line that it is parallel or perpendicular to...	1. Determine the slope of the parallel or perpendicular line (e.g.. if it is parallel, it has the same slope) 2. If the slope is undefined or 0 , draw a picture 3. If the slope is a non-zero real number, go to If you have a point \& a slope...	Ex. point $(3,2) \&$ perpendicular to x-axis $m=$ undefined $x=3$ Ex. point $(3,2) \&$ perpendicular to $y=2 x-4$ $m=2$, so for perpendicular line $m=-1 / 2$
If you have 2 points...	1. Use the slope equation to determine the slope 2. Go to If you have a point \& a slope...	$\begin{gathered} \text { Ex. }(0,0) \&(3,6) \\ \quad m=\frac{6-0}{3-0}=2 \end{gathered}$

Part 2 - Beginning Algebra Summary

4. Systems of Linear Equations

4.1. Definitions		
Type of Intersection	- IDENTICAL (I) - Same slope \& same y-intercept - No SOLUTION (N) - Same slope \& different yintercept, the lines are parallel - ONE POINT - Different slopes	Identical Consistent Dependent
Terminology	- CONSISTENT SYSTEM - The lines intersect at a point or are identical. System has at least 1 solution - INCONSISTENT SYSTEM - The lines are parallel. System has no solution	No solution Inconsistent Independent \leftarrow
	- DEPENDENT EQUATIONS - The lines are identical. Infinite solutions - INDEPENDENT EQUATIONS - The lines are different. One solution or no solutions	One point Consistent Independent

4.2. Solving by Graphing			
1	Graph both equations on the same Cartesian plane The intersection of the graphs gives the common solution(s). If the graphs intersect at a point, the solution is an ordered pair.	$y=\frac{1}{2} x-1$ $y=x-1$	
2	Check the solution in both original equations	$(0,-1)$ $-1=\frac{1}{2}(0)-1$ $-1=(0)-1$	

Part 2 - Beginning Algebra Summary

4.3. Solving by Substitution

1. Solve either equation for either variable. (pick the equation with the easiest variable to solve for)
2. Substitute the answer from step 1 into the other equation
3. Solve the equation resulting from step 2 to find the value of one variable *
4. Substitute the value form Step 3 in any equation containing both variables to find the value of the other variable.
5. Write the answer as an ordered pair
6. Check the solution in both original equations

Solve $\left\{\begin{array}{c}x-2 y=1 \\ 2 x-4=6 y\end{array}\right.$

1. $y=\frac{1-x}{-2}$
2. $2 x-4=\breve{-}_{6}^{-3}\left(\frac{1-x}{-2}\right)$
3. $2 x=-3+3 x+4$
$x=-1$
4. $y=\frac{1-(-1)}{-2}=-1$
5. $(-1,-1)$
6. $(-1)-2(-1)=1$
$1=1 \sqrt{ }$
$2(-1)-4=6(-1)$ $-6=-6 \sqrt{ }$
*If all variables disappear \& you end up with a true statement (e.g. $5=5$), then the lines are identical If all variables disappear $\&$ you end up with a false statement (e.g. $5=4$), then the lines are parallel

Part 2 - Beginning Algebra Summary

4.4. Solving by Addition or Subtraction

1. Rewrite each equation in standard form $A x+B y=C$
2. If necessary, multiply one or both equations by a number so that the coefficients of one of the variables are opposites.
3. Add equations (One variable will be eliminated)*
4. Solve the equation resulting from step 3 to find the value of one variable.
5. Substitute the value form Step 4 in any equation containing both variables to find the value of the other variable.
6. Write the answer as an ordered pair
7. Check the solution in both original equations

Solve $\left\{\begin{array}{l}x-2 y=1 \\ 2 x-4=6 y\end{array}\right.$

1. $x-2 y=1$

$$
2 x-6 y=4
$$

2. Multiply both sides of the first equation by -2

$$
\begin{array}{rlrl}
& & -2 x+4 y & =-2 \\
& 2 x-6 y & =4 \\
\hline \text { 3. } & -2 y & =2 \\
\text { 4. } & y & =-1 \\
\text { 5. } x-2(-1) & =1 \\
x & x & =-1
\end{array}
$$

6. $(-1,-1)$
7. $-2(-1)+4(-1)=-2$

$$
\begin{aligned}
-2 & =-2 \sqrt{ } \\
2(-1)-4 & =6(-1) \\
-6 & =-6 \sqrt{ }
\end{aligned}
$$

*If all variables disappear \& you end up with a true statement (e.g. $5=5$), then the lines are identical If all variables disappear $\&$ you end up with a false statement (e.g. $5=4$), then the lines are parallel

5. Word Problems

5.1. Solving		
	1 Variable, 1 Equation Method	2 Variables, 2 Equations Method
(1) Understand the PROBLEM - As you use information, eross it out or underline it.	In a recent election for mayor 800 people voted. Mr. Smith received three times as many votes as Mr. Jones. How many votes did each candidate receive?	
(2) Define variables - Create "Let" statement(s) - The variables are usually what the problem is asking you to solve for	- Name what x is (Can only be one thing. When in doubt, choose the smaller thing) - Define everything else in terms of x Let $x=$ Number of votes Mr. J $3 x=$ Number of votes Mr. S	Let $x=$ Number of votes Mr. S $y=$ Number of votes Mr. J
(3) Write the equation(s) - You need as many equations as you have variables	$x+3 x=800$	- Usually each sentence is an equation $\begin{aligned} x+y & =800 \\ x & =3 y \end{aligned}$
(4) Solve the equation(s)	$\begin{aligned} 4 x & =800 \\ x & =200 \end{aligned}$	$\begin{aligned} (3 y)+y & =800 \text { (Substitution) } \\ 4 y & =800 \\ y & =200 \end{aligned}$
(5) ANSWER THE QUESTION - Answer must include units!	- Go back to your "Let" statement $200=$ Number of votes Mr. J $600=$ Number of votes Mr. S	- Go back to your "Let" statement $200=$ Number of votes Mr. J - Go back to your "Equations" \& solve for remaining variable $\begin{aligned} x+(200) & =800 \\ x & =600 \end{aligned}$ $600=$ Number of votes Mr. S
(6) CHECK - Plug answers into equation(s)	$\begin{aligned} (200)+3(200) & =800 \\ 800 & =800 \sqrt{ } \end{aligned}$	$\begin{aligned} (600)+(200) & =800 \\ 800 & =800 \sqrt{ } \\ (600) & =3(200) \\ 600 & =600 \sqrt{ } \end{aligned}$

Part 2 - Beginning Algebra Summary

6. Polynomials

6.1. Definitions				
Term	- A constant, a variable, or a product of a constant and one or more variables raised to powers.			
Polynomial	- A sum of terms which contains only whole number exponents and no variable in the denominator			
Polynomial Name According to Number of Terms	Number of Terms	Polynomial Name	Examples	
	1	Monomial	$3 x$	
	2	Binomial	$3 x+3$	
	3	Trinomial	$x^{2}+2 x+1$	
Degree of a Polynomial Determines number of answers (x-intercepts)	1. Express polynomial in simplified (expanded) form. 2. Sum the powers of each variable in the terms. 3. The degree of a polynomial is the highest degree of any of its terms			
Polynomial Name According to Degree	Degree	Polynomial Name	Examples	
	1	Linear	$3 x$	
	2	Quadratic	$3 x^{2}$	
	3	Cubic	$3 x^{3}$	
	4	Quartic	$3 x^{4} \quad 3 x^{3} y$	

Part 2 - Beginning Algebra Summary

6.2. Multiplication Multiply each term of the first polynomial by each term of the second polynomial, and then combine like terms	
Horizontal Method - Can be used for any size polynomials	Ex: $(x-2)\left(x^{2}+5 x-1\right)$
Vertical Method - Can be used for any size polynomials. - Similar to multiplying two numbers together	$\text { Ex: } \begin{array}{rrrr} (x-2)\left(x^{2}+5 x-1\right) \\ & x^{2} & 5 x & -1 \\ & & x & -2 \\ \hline & -2 x^{2} & -10 x & 2 \\ x^{3} & 5 x^{2} & -x & \\ \hline x^{3} & +3 x^{2} & -11 x & +2 \end{array}$
FOIL Method 1. May only be used when multiplying two binomials. First terms, Outer terms, Inner terms, Last terms	$\text { Ex: } \begin{aligned} & (x-2)(x-3) \\ = & \mathrm{F}^{\mathrm{F}} \bullet \\ = & x+x(-3)+(-2) x+(-2)(-3) \\ = & \left.x^{2}-3 x-2 x\right)+6 \\ = & x^{2}-5 x+6 \end{aligned}$

Part 2 - Beginning Algebra Summary Page 15 of 34

	6.3. Division Dividing a Polynomial by a Monomial
Write Each Numerator Term over the Denominator Method $\frac{a+b+c}{d}=\frac{a}{d}+\frac{b}{d}+\frac{c}{d}$	$\text { Ex: } \begin{aligned} & \frac{2 x+2}{4} \\ = & \frac{2 x}{4}+\frac{2}{4} \\ = & \frac{1}{2} x+\frac{1}{2} \end{aligned}$
Factor Numerator and Cancel Method	$\text { Ex: } \begin{aligned} & \frac{2 x+2}{4} \\ = & \frac{2(x+1)}{4} \\ = & \frac{x+1}{2} \\ = & \frac{1}{2} x+\frac{1}{2} \end{aligned}$

Part 2 - Beginning Algebra Summary

7. Factoring

Factoring	- Writing an expression as a product - Numbers can be written as a product of primes. Polynomials can be written as a product of prime polynomials - Useful to simplify rational expressions and to solve equations - The opposite of multiplying	\triangleright Factored $2(x+2)$ \triangleright Not factored $2 x+4$ $2 \cdot x+2 \cdot 2$ tactoring $\triangleright 2 x+4=2(x+2)$ Tnultiplying
GCF of a List of Integers	1. Write each number as a product of prime numbers 2. Identify the common prime factors 3. The PRODUCT OF ALL COMMON PRIME FACTORS found in Step 2 is the GCF. If there are no common prime factors, the GCF is 1	$\begin{aligned} & \triangleright \text { Find the GCF of } 18 \& 30 \\ & 18=2 \bullet 3 \bullet 3 \\ & 30=2 \bullet \cdot 3 \cdot 5 \\ & G C F=2 \bullet 3 \\ &=6 \end{aligned}$
GCF of a List of Variables	- The variables raised to the smallest power in the list	$\begin{aligned} & \triangleright \text { Find the GCF of } x \& x^{2} \\ & \text { GCF }=x \end{aligned}$
GCF of a List of Terms	- The product of the GCF of the numerical coefficients and the GCF of the variable factors	\triangleright Find the GCF of $18 x \& 30 x^{2}$ GCF $=6 x$
Factor by taking out the GCF	1. Find the GCF of all terms 2. Write the polynomial as a product by factoring out the GCF 3. Apply the distributive property 4. Check by multiplying	$\begin{aligned} \triangleright & -2 x^{2}+6 x^{3} \\ & =\left(-2 x^{2}\right) \square+\left(-2 x^{2}\right) \llbracket(-3 x) \\ & =-2 x^{2}(1-3 x) \\ & =-2 x^{2}+6 x^{3} \sqrt{ } \\ \triangleright & -x^{2}+1 \\ & =(-1)\left(x^{2}\right)+(-1) \llbracket(-1) \\ & =-1\left(x^{2}-1\right) \\ & =-x^{2}+1 \sqrt{ } \end{aligned}$

Part 2 - Beginning Algebra Summary

7.2. 4 Terms
 $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=(?+?)(?+?)$

- FACTOR BY GROUPING

1. Arrange terms so the $1^{\text {st }} 2$ terms have a common factor and the last 2 have a common factor
2. For each pair of terms, factor out the pair's GCF
3. If there is now a common binomial factor, factor it out
4. If there is no common binomial factor, begin again, rearranging the terms differently. If no rearrangement leads to a common binomial factor, the polynomial cannot be factored.
\triangleright Factor 10ax-6xy-9y+15a
5. $10 a x+15 a-6 x y-9 y$
6. $5 a(2 x+3)-3 y(2 x+3)$
$(2 x+3)(5 a-3 y)$

Part 2 - Beginning Algebra Summary

7.3. Trinomials: Leading Coefficient of 1
 $x^{2}+b x+c=(x+?)(x+?)$

- $\frac{\text { TRIAL \& ERROR }}{\swarrow}$ Product is $c>$
$(x+$ one number $)(x+$ other number $)$
$\wedge_{\text {Sum is } b} \rightarrow$

1. Place x as the first term in each binomial, then determine whether addition or subtraction should follow the variable

$$
\begin{aligned}
& x^{2}+b x+c=(x+d)(x+e) \\
& x^{2}-b x+c=(x-d)(x-e) \\
& x^{2} \pm b x-c=(x+d)(x-e)
\end{aligned}
$$

2. Find all possible pairs of integers whose product is c
3. For each pair, test whether the sum is b
4. Check with FOIL $\sqrt{ }$

Ex: Factor $x^{2}+7 x+10$

1. $(x+)(x+)$
2. $2 \square 5=10$
$1 \square 10=10$
3. $2+5=7-\mathrm{YES}$
$1+10=11-\mathrm{NO}$
$(x+5)(x+2)$
4. $x^{2}+7 x+10 \vee$

Part 2 －Beginning Algebra Summary

7．4．Trinomials：All
 $a x^{2}+b x+c=(? x+?)(? x+?)$

－METHOD 1 （trial \＆error）
1．Try various combinations of factors of $a x^{2}$ and c until a middle term of $b x$ is obtained when checking．

2．Check with FOIL $\sqrt{ }$
－METHOD 2 （ $a c$ ，factor by grouping）
1．Identify a, b ，and c
2．Find 2 ＂magic numbers＂whose product is $a c$ and whose sum is b ．Factor trees can be very useful if you are having trouble finding the magic numbers （See MA090）

3．Rewrite $b x$ ，using the＂magic numbers＂found in Step 2
4．Factor by grouping
5．Check with FOIL $\sqrt{ }$
－METHOD 3 （quadratic formula）
1．Use the quadratic formula to find the x values（or roots）

2．For each answer in step 1．，rewrite the equation so that it is equal to zero

3．Multiply the two expressions from step 2 ，and that is the expression in factored form．

4．Check with FOIL $\sqrt{ }$

Ex：Factor： $3 x^{2}+14 x-5$
Product is $3 x^{2}$ Product is -5

「ハブ
$15 x-x=14 x$（correct middle term）
Ex：Factor： $3 x^{2}+14 x-5$
1．$a=3$
$b=14$
$c=-5$
2．$a c=(3) \sqcup(-5)=-15$
$b=14$
$(15) \sqcup(-1)=-15 \vee$
$(15)+(-1)=14 \sqrt{ }$
＂magic numbers＂ $15,-1$
3． $3 x^{2}+15 x-x-5$
4． $3 x(x+5)-1(x+5)$
$(x+5)(3 x-1)$
Ex：Factor： $3 x^{2}+14 x-5$
1．$a=3$
$b=14$
$c=-5$
$x=\frac{-14 \pm \sqrt{14^{2}-4(3)(-5)}}{6}$
$x=\frac{1}{3},-5$

2．$x=\frac{1}{3}$
$x-\frac{1}{3}=0$
$3 x-1=0$
$x=-5$
$x+5 \Rightarrow 0$
3．$(3 x-1)(x+5)$

Part 2 - Beginning Algebra Summary

7.5. \quad Perfect Square Trinomials \& Binomials

Perfect Square Trinomials $a^{2} \pm 2 a b+b^{2}$	- Factors into perfect squares (a binomial squared) $\begin{aligned} & a^{2}+2 a b+b^{2}=(a+b)^{2} \\ & a^{2}-2 a b+b^{2}=(a-b)^{2} \end{aligned}$	$\begin{gathered} \triangleright 9 x^{2}+24 x+16=(3 x)^{2}+2(3 x)(4)+(4)^{2} \\ =(3 x+4)^{2}(a=3 x, b=4) \\ \triangleright 9 x^{2}-24 x+16=(3 x)^{2}-2(3 x)(4)+(4)^{2} \\ =(3 x-4)^{2}(a=3 x, b=4) \end{gathered}$
Difference of Squares $a^{2}-b^{2}$	- Factors into the sum \& difference of two terms $a^{2}-b^{2}=(a+b)(a-b)$	$\begin{aligned} \triangleright x^{2}-1 & =(x)^{2}-(1)^{2} \quad(a=x, b=1) \\ & =(x+1)(x-1) \end{aligned}$
Sum of Squares $a^{2}+b^{2}$	- Does not factor $a^{2}+b^{2}=$ Prime	$\triangleright x^{2}+1$ is prime
Difference of Cubes $a^{3}-b^{3}$ (MA103)	- $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$	$\begin{aligned} \triangleright 8 x^{3}-27 & =(2 x)^{3}-(3)^{3}(a=2 x, b=3) \\ & =(2 x-3)\left(4 x^{2}+6 x+9\right) \end{aligned}$
Sum of Cubes $a^{3}+b^{3}$ (MA103)	- $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$	$\begin{aligned} \triangleright 8 x^{3}+27 & =(2 x)^{3}+(3)^{3}(a=2 x, b=3) \\ & =(2 x+3)\left(4 x^{2}-6 x+9\right) \end{aligned}$
Prime Polynomials (P)	- Can not be factored	$\triangleright x^{2}+3 x+1$ is prime $\triangleright x^{2}-3$ is prime

Part 2 - Beginning Algebra Summary

7.6. Steps to Follow

$\left.\begin{array}{|l|l|l|}\hline \text { 1. Put variable terms in descending order of degree with the } \\ \text { constant term last. }\end{array} \quad \begin{array}{c}\text { Ex. }-32+2 x^{4} \\ =2 x^{4}-32\end{array}\right]=2\left(x^{4}-16\right)$

Part 2 - Beginning Algebra Summary

8. Quadratics

8.1. About			
Standard Form	$\boxed{y} x^{2}+b x+c=0$	$\triangleright x^{2}-3 x+2=0$	
Solutions	Has n solutions, where n is the highest exponent	$\triangleright x^{3}-3 x^{2}+2 x=0$ (has 3 solutions)	

8.2. Graphing		
Standard Form	$y=a x^{2}+b x+c$ - $\quad a, b$, and c are real constants	$\triangleright \mathrm{y}=x^{2}-9 x+20$
Solution	- A parabola	
Simple Form	$y=a x^{2}$ - Vertex (high/low point) is $(0,0)$ - Line of symmetry is $x=0$ - The parabola opens up if $a>0$, down if $a<0$	$\triangleright y=-4 x^{2}$
Graph	1. Plot y value at vertex 2. Plot y value one unit to the left of the vertex 3. Plot y value one unit to the right of the vertex	$\triangleright y=-4 x^{2}$

Part 2 - Beginning Algebra Summary Page 23 of 34

8.3. Solve by Factoring		
Zero Factor Property	1. If a product is 0 , then a factor is 0	$\triangleright x y=0$ (either x or y must be zero)
Solve by Factoring	1. Write the equation in standard form (equal 0) 2. Factor 3. Set each factor containing a variable equal to zero 4. Solve the resulting equations	$\triangleright x^{2}-3 x+2=0$ 1. $x(x-1)(x-2)=0$ 2. $x=0, x-1=0, x-2=0$ 3. $x=0,1,2$

Part 2 - Beginning Algebra Summary

8.4. Solve with the Quadratic Equation

To solve a quadratic equation that is difficult or impossible to factor

1. Write the values for $a, b, \& c$ (if a term does not exist, the coefficient is 0)
2. Plug values into the
quadratic equation below:
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
3. Simplify solutions and usually leave them in their most exact form
(Negative radicand means no real solutions)

Ex Radicand is a perfect square

$$
\begin{aligned}
& x^{2}-3 x+2=0 \\
& a=1, b=(-3), c=2 \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(2)}}{2(1)}=\frac{3 \pm \sqrt{1}}{2} \\
& \quad=2,1
\end{aligned}
$$

Ex Radicand breaks into "perfect square" and "leftovers"
$x^{2}+6 x-1=0$
$a=1, b=6, c=(-1)$
$x=\frac{-(6) \pm \sqrt{(6)^{2}-4(1)(-1)}}{2(1)}$
$=\frac{-6 \pm \sqrt{40}}{2}=\frac{-6 \pm 2 \sqrt{10}}{2}$
$=\frac{-6}{2} \pm \frac{2 \sqrt{10}}{2}=-3 \pm \sqrt{10}$
Ex Radicand is just "leftovers"

$$
\begin{aligned}
& 4 x^{2}-x-1=0 \\
& a=4, b=(-1), c=(-1) \\
& x
\end{aligned}=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(4)(-1)}}{2(4)}, ~=\frac{1 \pm \sqrt{17}}{8}
$$

Part 2 - Beginning Algebra Summary

9. Exponents

9.1. Computation Rules		
Exponential notation - Shorthand for repeated multiplication	base $\rightarrow x^{a}$ <exponent	$2^{3}=2 \cdot 2 \cdot 2=8$
Multiplying common bases - Add powers	$x^{a} \square x^{b}=x^{a+b}$	$\begin{aligned} & 2^{2} \square^{3}=2^{2+3}=2^{5}=32 \\ & \left(3 x^{2}\right)(2 y)(4 x)=24 x^{3} y \end{aligned}$
Dividing common bases - Subtract powers	$\frac{x^{m}}{x^{n}}=x^{m-n}$	$\frac{3^{5}}{3^{3}}=3^{5-3}=3^{2}=9$
Raising a product to a power - Raise each factor to the power	$\begin{aligned} & (x y)^{a}=x^{a} \square y^{a} \\ & \left(x^{m} y^{n}\right)^{a}=x^{m a} \square y^{n a} \end{aligned}$	$\left(2 x^{3}\right)^{2}=2^{2} x^{6}=4 x^{6}$
Raising a quotient to a power - Raise the dividend and divisor to the power	$\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$	$\left(\frac{2}{z}\right)^{2}=\frac{2^{2}}{z^{2}}=\frac{4}{z^{2}}$
Raising a power to a power - Multiply powers	$\left(x^{a}\right)^{b}=x^{a \bullet b}$	$\left(2^{3}\right)^{2}=2^{3 / 2}=2^{6}=64$
Raising to the zero power - One	$x^{0}=1$, when $x \neq 0$	$6 x^{0}=(6)(1)=6$
Raising to a negative power - Reciprocal of positive power - When simplifying, eliminate negative powers	$x^{-n}=\frac{1}{x^{n}}$	$2^{3} \square^{-3}=\frac{2^{3}}{1} \frac{1}{2^{3}}=1$

Part 2 - Beginning Algebra Summary

9.2. Scientific Notation			
Scientific Notation	- Shorthand for writing very small and large numbers - $a \bullet 10^{r}$, where $1 \leq a<10 \& r$ is an integer	$\left(1.2 \times 10^{2}\right)(1.2$	$\left(1.2 \times 10^{2}\right)\left(1.2 \times 10^{3}\right)$
Standard Form	- Long way of writing numbers	$120 \times 1200=144000$	
Standard Form to Scientific Notation	1. Move the decimal point in the original number to the left or right so that there is one digit before the decimal point 2. Count the number of decimal places the decimal point is moved in STEP 1 - If the original number is 10 or greater, the count is positive - If the original number is less than 1 , the count is negative 3. Multiply the new number from STEP 1 by 10 raised to an exponent equal to the count found in STEP 2	$\begin{aligned} & \hline 510 \\ & 5.10 \\ & +2 \\ & +2 \\ & 5.1 \times 10^{2} \end{aligned}$. 051 05.1 -2 5.1×10^{-2}
Scientific Notation to Standard Form	1. Multiply numbers together	$\begin{aligned} & 5.1 \times 10^{2} \\ & =5.1 \times 100 \\ & =510 \end{aligned}$	$\begin{aligned} & 5.1 \times 10^{-2} \\ & =5.1 \times \frac{1}{100} \\ & =.051 \end{aligned}$

Part 2 - Beginning Algebra Summary

10. Radicals

10.1. Definitions		
Roots	- Undoes raising to powers $\sqrt[2]{81}=9$ because $9^{2}=81$ index $\sqrt[2]{81} \kappa_{\text {radical }}$ \uparrow radicand	$\triangleright \sqrt{81}=\sqrt[2]{81}=9$ (The square root of 81 is 9) $\triangleright \sqrt{27}=\sqrt[3]{27}=3$ (The cube root of 27 is 3)
Computation	- If n IS AN EVEN POSITIVE INTEGER, then $\sqrt[n]{a^{n}}=\|a\|$ The radical $\sqrt{ }$ represents only the non-negative square root of a. The $-\sqrt{ }$ represents the negative square root of a. - IF n IS AN ODD POSTIVIE INTEGER, then $\sqrt[n]{a^{n}}=a$	$\begin{aligned} & \triangleright \sqrt{9}=\sqrt{3^{2}}=\|3\|=3 \\ & \triangleright \sqrt{(-3)^{2}}=\|-3\|=3 \\ & \triangleright \sqrt{(x+1)^{2}}=\|x+1\| \\ & \triangleright \sqrt{-9} \text { "Not a real number" } \\ & \triangleright-\sqrt{9}=-\sqrt{3^{2}}=-\|3\|=-3 \\ & \triangleright \sqrt{.09}=\|.3\|=.3 \quad(.3 \bullet .3=.09) \\ & \triangleright \sqrt{3} \approx\|1.73\| \approx 1.73 \text { (approximately) } \\ & \triangleright \sqrt[3]{27}=\sqrt[3]{3^{3}}=3 \\ & \triangleright \sqrt[3]{-27}=\sqrt[3]{(-3)^{3}}=-3 \end{aligned}$
Notation: Radical vs. Rational Exponent	- The root of a number can be expressed with a radical or a rational exponent - Rational exponents - The numerator indicates the power to which the base is raised. - The denominator indicates the index of the radical	$\begin{aligned} & \triangleright \sqrt[3]{27}=(27)^{1 / 3} \\ & \triangleright \sqrt[3]{27^{2}}=(\sqrt[3]{27})^{2}=27^{2 / 3}=\left(27^{1 / 3}\right)^{2} \\ & \triangleright \frac{1}{\sqrt[3]{27^{2}}}=\left(\frac{1}{\sqrt[3]{27}}\right)^{2}=27^{-2 / 3}=\left(27^{1 / 3}\right)^{-2} \end{aligned}$ Note, it's usually easier to compute the root before the power

Part 2 - Beginning Algebra Summary

10.2. Computation Rules		
Operations	• Roots are powers with fractional exponents, thus power rules apply.	$\triangleright \sqrt[3]{-8 x^{3}}=\left(-8 x^{3}\right)^{1 / 3}$ $=(-8)^{1 / 3}\left(x^{3}\right)^{1 / 3}=-2 x$
Product Rule	$\sqrt[n]{a} \sqrt[n]{b}=\sqrt[n]{a b}$	$\triangleright \sqrt{6} \sqrt{7}=\sqrt{42}$
Quotient Rule	$\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$, provided $\sqrt[n]{b} \neq 0$	$\triangleright \sqrt{\frac{1}{25}}=\frac{\sqrt{1}}{\sqrt{25}}=\frac{1}{5}$

Part 2 - Beginning Algebra Summary

11. Rationals

11.1. Simplifying Expressions		
Rational Numbers	- Can be expressed as quotient of integers (fraction) where the denominator $\neq 0$ - All integers are rational - All "terminating" decimals are rational	$\begin{aligned} & \triangleright 0=0 / 1 \\ & \triangleright 4=4 / 1 \\ & \triangleright 4.25=17 / 4 \end{aligned}$
Irrational Numbers	- Cannot be expressed as a quotient of integers. Is a non-terminating decimal	$\begin{aligned} & \triangleright \pi=3.141592654 \ldots \\ & \triangleright \sqrt{2}=1.414213562 \ldots \end{aligned}$
Rational Expression	1. An expression that can be written in the form $\frac{P}{Q}$, where P and Q are polynomials 2. Denominator $\neq 0$	$\triangleright \frac{x}{x+6}$, Find real numbers for which this expression is undefined: $x+6=0 ; x=-6$
Simplifying Rational Expressions (factor)	1. Completely factor the numerator and denominator 2. Cancel factors which appear in both the numerator and denominator	$\begin{aligned} \triangleright & \text { Simplify } \frac{4 x+20}{x^{2}-25} \\ & =\frac{4(x+5)}{(x+5)(x-5)} \\ & =\frac{4}{x-5} \end{aligned}$

Part 2 - Beginning Algebra Summary

11.2. Arithmetic Operations

Multiplying/ Dividing Rational Expressions (multiply across)	1. If it's a division problem, change it to a multiplication problem 2. Factor \& simplify 3. Multiply numerators and multiply denominators 4. Write the product in simplest form	$\begin{aligned} \triangleright \text { Simplify } \frac{x}{x+6} \square \frac{3}{x} & =\frac{3 x}{x(x+6)} \\ & =\frac{3}{x+6} \end{aligned}$
Adding/ Subtracting Rational Expressions (get common denominator)	1. Factor \& simplify each term 2. Find the LCD * The LCD is the product of all unique factors, each raised to a power equal to the greatest number of times that it appears in any one factored denominator 3. Rewrite each rational expression as an equivalent expression whose denominator is the LCD 4. Add or subtract numerators and place the sum or difference over the common denominator 5. Write the result in simplest form	$\begin{aligned} & \left.\left.\triangle \text { Simplify } \frac{x}{x+6}\right)+\frac{3}{6}\right) \\ & \quad=\frac{(6) x}{(6)(x+6)}+\frac{3(x+6)}{6(x+6)} \\ & \quad=\frac{6 x}{6(x+6)}+\frac{3 x+18}{6(x+6)} \\ & \quad=\frac{9 x+18}{6(x+6)} \\ & \quad=\frac{2^{3}(x+2)}{6^{2}(x+6)} \\ & =\frac{3 x+6}{2(x+6)} \end{aligned}$

Part 2 - Beginning Algebra Summary

11.3. Solving Equations		
Solving by Eliminating the Denominator	1. Factor \& simplify each term 2. Multiply both sides (all terms) by the LCD 3. Remove any grouping symbols 4. Solve 5. Check answer in original equation. If it makes any of the denominators equal to 0 (undefined), it is not a solution	$\left.\begin{array}{l} \text { Solve } \frac{x}{x+6}+\frac{3}{x}=1 \\ \text { LCD }=x(x+6) \\ {[x(x+6)]\left[\frac{x}{x+6}+\frac{3}{x}\right]=[x(x+6)] 1} \\ {\left[\frac{x(x+6)}{1}\right]\left[\frac{x}{x+6}\right]+\left[\frac{x(x+6)}{1}\right]\left[\frac{3}{x}\right]=[x(x+6)] 1} \\ x(x)+3(x+6) \\ =1\left(x^{2}+6 x\right) \\ x^{2}+3 x+18 \end{array}\right)=x^{2}+6 x .\left[\begin{array}{rl} x & =6 \\ \text { Check } \frac{(6)}{(6)+6}+\frac{3}{(6)}=1 \\ \frac{1}{2}+\frac{1}{2} & =1 \sqrt{ } \end{array}\right.$
Solving Proportions with the Cross Product $\frac{a}{b}=\frac{c}{d}$	If your rational equation is a proportion, it's easier to use this shortcut 1. Set the product of the diagonals equal to each other 2. Solve 3. Check	$\begin{aligned} 3(x-1) & =4 x \\ 3 x-3 & =4 x \\ x & =-3 \end{aligned}$ Check $\frac{3}{4}=\frac{(-3)}{(-3)-1} \sqrt{ }$

Part 2 - Beginning Algebra Summary

12. Summary

12.1. Formulas		
Geometric	Triangle	- SUM OF ANGLES: Angle $1+$ Angle $2+$ Angle $3=180^{\circ}$
		- PYTHAGOREAN THEOREM: $a^{2}+b^{2}=c^{2}$ ($a=\operatorname{leg}, b=\mathrm{leg}, c=$ hypotenuse) \sim The hypotenuse is the side opposite the right angle. It is always the longest side.
Other	Distance	- DISTANCE: $d=r t$ ($r=$ rate, $t=$ time)

Part 2 - Beginning Algebra Summary

12.2. Types of Equations		
	1 Variable	2 Variables
Linear Equations	$x-2=0$ MA090 Solution: 1 Point $\longleftrightarrow \underset{0}{1} \underset{2}{\longrightarrow}$	
Linear Inequalities	$\begin{array}{lll} \hline x-2<0 & & \text { page } \\ 4 \\ \text { Solution: Ray } & \underset{0}{\sim} \\ \end{array}$	$y>x-2$ Solution: $1 / 2$ plane
Systems of Linear Equations	$\left\{\begin{array}{l} x=7 \\ y=-5 \end{array}\right.$ page 10 Solution: 1 point, infinite points or no points	$\left\{\begin{array}{l} y=-x \\ y=x+2 \end{array}\right.$ page 10 Solution: 1 point, infinite points or no points
Quadratic Equations	$\begin{array}{ll} \begin{array}{l} x^{2}+5 x+6=0 \\ 34 \\ \text { Solution: Usually } 2 \text { points } \\ \leftarrow \end{array} & \\ \xrightarrow[0]{*}-2 & 1 \\ \hline \end{array}$	
Higher Degree Polynomial Equations (cubic, quartic, etc.)	$x^{3}+5 x^{2}+6 x=0$ Solution: Usually x points, where x is the highest exponent	$y=x^{3}+5 x^{2}+6 x$ Solution: Curve
Rational Equations	$\frac{x^{2}-1}{x+1}=1$ page 31 Solution: Sometimes simplifies to a linear or quadratic equation	$y=-\frac{x^{2}-1}{x+1}+1$ Solution: Sometimes simplifies to a linear or quadratic equation

* To determine the equation type, simplify the equation. Occasionally all variables "cancel out".
- If the resulting equation is true (e.g. $5=5$), then all real numbers are solutions.
- If the resulting equation is false (e.g. $5=4$), then there are no solutions.

Part 2 - Beginning Algebra Summary

12.3. Solve Any 1 Variable Equation

Make an equivalent, simpler equation

- If the equation contains fractions, eliminate the fractions (multiplying both sides by the LCD)
- If there is a common factor in each term, divide both sides of the equation by the common factor

Solve by "undoing" the equation

- Linear equations can by undone with the addition, subtraction, multiplication \& division equality properties
- Quadratics, of the form $(x+a)^{2}=b$, can be undone with the square root property

Write the equation in standard form

- Make one side equal to zero
- Put variable terms in descending order of degree with the constant term last

